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ABSTRACT 

 

This dissertation concerns power system expansion planning under different market 

mechanisms. The thesis follows a three paper format, in which each paper emphasizes a 

different perspective. The first paper investigates the impact of market uncertainties on a long 

term centralized generation expansion planning problem. The problem is modeled as a two-

stage stochastic program with uncertain fuel prices and demands, which are represented as 

probabilistic scenario paths in a multi-period tree. Two measurements, expected cost (EC) 

and Conditional Value-at-Risk (CVaR), are used to minimize, respectively, the total expected 

cost among scenarios and the risk of incurring high costs in unfavorable scenarios. We 

sample paths from the scenario tree to reduce the problem scale and determine the sufficient 

number of scenarios by computing confidence intervals on the objective values. The second 

paper studies an integrated electricity supply system including generation, transmission and 

fuel transportation with a restructured wholesale electricity market. This integrated system 

expansion problem is modeled as a bi-level program in which a centralized system expansion 

decision is made in the upper level and the operational decisions of multiple market 

participants are made in the lower level. The difficulty of solving a bi-level programming 

problem to global optimality is discussed and three problem relaxations obtained by 

reformulation are explored. The third paper solves a more realistic market-based generation 

and transmission expansion problem. It focuses on interactions among a centralized 

transmission expansion decision and decentralized generation expansion decisions. It allows 

each generator to make its own strategic investment and operational decisions both in 
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response to a transmission expansion decision and in anticipation of a market price settled by 

an Independent System Operator (ISO) market clearing problem. The model poses a 

complicated tri-level structure including an equilibrium problem with equilibrium constraints 

(EPEC) sub-problem. A hybrid iterative algorithm is proposed to solve the problem 

efficiently and reliably.  
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CHAPTER 1   INTRODUCTION 

1.1 Background 

Electrical energy has become a more and more essential part of people’s lives as well 

as a key concern of the whole world. The increasing use of electricity has rapidly improved 

our human society and standard of living. However, with the global economy more reliant on 

sustainable development of energy, a series of problems, such as energy shortage, electricity 

blackout and global warming are gaining attention. All these issues contribute to the 

importance of maintaining a reliable and efficient electricity energy supply system. 

The complexity of decision making in power system expansion planning problems 

arises from the diversity of technologies available for generating power, important reliability 

constraints of sufficient energy supply, and wholesale market restructuring. Both investment 

planning and operational scheduling must be considered over multiple decades because of the 

scale of capital investment and long lives of generation and transmission assets. The problem 

is complicated by the multiplicity of organizations involved in the whole integrated 

electricity supply system including fuel transportation, generation, transmission and 

distribution facilities. And it also concerns the facilities siting, environmental impact and 

reliability to avoid potential electricity blackout [1, 2]. 

Power system expansion planning is also very complicated to formulate due to the 

large number of uncertainties involved. Load growth has always been a significant 

uncertainty in generation expansion planning. It can usually be estimated by forecasting 

climate, population expansion or movement, and technology development. Prices and 
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availability of fuels, particularly coal and natural gas, contribute additional uncertainty. 

Generally speaking, coal price can be considered to be more stable with an average yearly 

growth rate of 2%, while natural gas price fluctuates in a more unpredictable way [3]. 

Natural gas price is usually considered to be a very important uncertainty in the generation 

expansion planning problem. It accounts for an increasing share of total generation because it 

is cleaner than coal and the units can be started and stopped quickly to compensate for 

fluctuations in renewable energy. Increasingly, gas units have become the marginal ones so 

their costs have a significant impact on wholesale electricity price. Recently, a newly 

available resources, shale gas, has become more attractive and the annual growth in 

production has averaged 17% from 2006 to 2011 [4]. Due to its low price and relatively low 

carbon emissions, it has now become a promising resource and its use is expected to grow 

rapidly in the future. 

The traditional capacity expansion planning problem takes a centralized perspective 

due to the industry’s previous vertically integrated structure of generation, transmission and 

distribution. The factors considered in the centralized planning decisions include the system 

load balance, reserve requirement, investment budget, and capacity limit constraints.  

However, in the 1990s, power system deregulation in United States introduced 

privatization and competition in the electricity market and is expected to lower electricity 

prices. The previous centralized integrated system was then decomposed into decentralized 

generator companies (GENCO), transmission owners (TRANSCO), distribution companies 

(DISCO), load serving entities (LSE) and individual consumers [5]. To enhance the 

reliability of the power grid, the Independent System Operator (ISO) was established to 
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monitor the grid, coordinate generation and transmission, settle the power trades among 

power sellers and buyers, and conduct the regional transmission expansion planning and 

resource adequacy studies. The deregulated markets introduced competition among multiple 

private participants in the electricity market, to which modeling from a centralized point of 

view no longer applies. New models such as game theory, equilibrium program and multi-

level programs are proposed to characterize the strategic behaviors and interactions among 

multiple players.  

To provide a reliable and efficient electricity supply network, we must consider not 

only generation expansion to make sure that we have sufficient energy to meet future loads, 

but also an entire integrated electricity supply system including transmission, fuel 

transportation, market settlement by ISO, and LSE. Limited fuel transportation capacity 

results in energy shortage, higher production cost, and less generation expansion; while the 

layout and expansion of the transmission network greatly affects the system efficiency in 

terms of transmission congestion, and wind/load/reserve curtailment, The ISO is significantly 

important to maintain the reliable and efficient operations. LSEs buy the bulk power from the 

electricity wholesale market and provide services to the end-use consumers. 

1.2 Problem Statement 

This dissertation addresses electricity system expansion planning problems including 

generation expansion, transmission expansion and fuel transportation expansion. The 

traditional expansion problem is a cost minimization problem for a vertically-integrated 

entity in a regulated environment, while market based planning in a deregulated competitive 
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market environment is more complicated because interactions from multiple market 

participants must be taken into account [6]. This dissertation covers both of these two major 

mechanisms and examines the problem from different perspectives.  

The dissertation begins with a traditional generation expansion planning problem that 

assumes a central regulator who aims for a system-wide cost minimization decision on how 

many units of what type of power plants to build in which year and how much electricity is 

generated by each type of the power plants. In the long term planning horizon, both the 

investment and operational decisions are largely affected by future uncertainties. The study 

addresses the following issues: 

1) The methodologies to model and integrate the multi-period evolution of multiple 

uncertain factors in a long term generation expansion planning (GEP) problem; 

2) The methodologies to deal with the large scale of uncertainty in a GEP problem to 

achieve a tradeoff between computational complexity and solution accuracy; 

3) The risk-based cost minimization model’s impact on the optimal generation mix 

compared to the expected cost minimization model.  

Besides consideration of investment and operational cost minimization, in 

restructured markets, the profit of expansion decision must also be taken into account to 

justify the expansion decision. The profit return received by an investor is determined by an 

electricity market price settlement. The independent system operator (ISO) matches the 

electricity supply bid and demand offer and settles the LMPs to maximize total market 

surplus of both buyers and sellers. Moreover, while investing more generation capacity, the 

transmission adequacy should be guaranteed to deliver the power, the fuel transportation 
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should be sufficient to supply the generation, and the system net surplus should be increasing. 

Therefore, research on an integrated electricity supply system is intended to address the 

following:  

1) The methodologies to address a mixed integer bi-level program with multiple 

followers that result from modeling an system net surplus maximization problem in 

which the expansion decisions for generation, transmission and fuel transportation are 

made from a centralized point of view in anticipation of the followers’ operational 

decisions in a competitive electricity market; 

2) The impact of the anticipation of the strategic GENCOs’ operational decisions on the 

capacity expansion decisions; the system surplus, decomposed as buyer surplus, seller 

surplus and transmission rent; and the electricity prices. 

Finally, due to the great impact of transmission expansion on individual generation 

expansion and operational decisions in the electricity markets, a more realistic model is 

investigated to account for the interaction among transmission and generation expansion with 

a competitive market. This work considers: 

1) The development of a market based transmission and generation model that can 

capture the strategic behaviors of GENCOs making both generation expansion and 

operational decision reacting to the transmission decisions and anticipating market 

settlement results by an ISO; 

2) The methodology to approach a solution of an equilibrium problem with equilibrium 

constraints (EPEC) comprised of bi-level games among GENCOs’ capacity 

expansion problems; 
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3) The methodology to solve a tri-level mixed integer problem with an EPEC sub-

problem resulting from a market based transmission and generation model; 

4) The transmission expansion’s impact on strategic GENCOs market power, system net 

surplus, transmission congestion, and electricity prices. 

1.3 Thesis Structure 

The dissertation consists of three papers. The first paper, published in Energy Systems 

[7], is reproduced in Chapter 2. The second paper, published by IEEE Transactions on Power 

Systems [8], is presented in Chapter 3 with an added appendix on incorporating carbon 

emission regulations. The third paper, submitted to IEEE Transactions on Power Systems, 

includes two parts with part I in Chapter 4, and part II in Chapter 5. A general conclusion in 

Chapter 6 summarizes the thesis.  

References 

[1] S.M. Ryan, J.D. McCalley, and D.L. Woodruff, “Long term resource planning for electric 

power systems under uncertainty”, Technical Report, Mar. 2010. 

[2] J. McCalley, “Introduction to electric systems expansion planning”, 

http://home.eng.iastate.edu/~jdm/ee590/PlanningIntro.pdf, Sep. 2008. 

[3] “Annual energy outlook 2009”, Technical Report, Energy Information Administration, 

Department of Energy, Mar. 2009. 

[4] “Annual energy outlook 2011”, Technical Report, Energy Information Administration, 

Department of Energy, Apr. 2011. 

http://home.eng.iastate.edu/~jdm/ee590/PlanningIntro.pdf
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Report, Aug. 2005. 

[6] R. Green, “Competition in generation: the economic foundations”, Proceedings of the 

IEEE, Vol. 88, No. 2, pp.128–139, Feb. 2000. 

[7] S. Jin, S.M. Ryan, J. Watson and D.L. Woodruff, “Modeling and Solving a Large-Scale 

Generation Expansion Planning Problem Under Uncertainty”, Energy Systems, Vol. 2, 

No. 3-4, pp. 209-242, 2011  

[8] S. Jin, S.M. Ryan, “Capacity Expansion in the Integrated Supply Network for an 

Electricity Market”, IEEE Transactions on Power Systems, Vol. 26, No. 4, pp. 2275-

2284, 2011  
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CHAPTER 2 MODELING AND SOLVING A LARGE-SCALE 

GENERATION EXPANSION PROBLEM UNDER UNCERTAINTY   

Published in Energy Systems 

Shan Jin, Sarah M. Ryan, Jean-Paul Watson and David L. Woodruff 

Abstract 

We formulate a generation expansion planning problem to determine the type and 

quantity of power plants to be constructed over each year of an extended planning horizon, 

considering uncertainty regarding future demand and fuel prices. Our model is expressed as a 

two-stage stochastic mixed-integer program, which we use to compute solutions 

independently minimizing the expected cost and the Conditional Value-at-Risk; i.e., the risk 

of significantly larger-than-expected operational costs. We introduce stochastic process 

models to capture demand and fuel price uncertainty, which are in turn used to generate trees 

that accurately represent the uncertainty space. Using a realistic problem instance based on 

the Midwest US, we explore two fundamental, unexplored issues that arise when solving any 

stochastic generation expansion model. First, we introduce and discuss the use of an 

algorithm for computing confidence intervals on obtained solution costs, to account for the 

fact that a finite sample of scenarios was used to obtain a particular solution. Second, we 

analyze the nature of solutions obtained under different parameterizations of this method, to 

assess whether the recommended solutions themselves are invariant to changes in costs. The 

issues are critical for decision makers who seek truly robust recommendations for generation 

expansion planning.  
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2.1 Introduction 

Generation expansion planning is the problem of determining the type, quantity, and 

timing of power plant construction to build in order to meet increasing demand for electricity 

over an extended time horizon. Over the last two decades, the magnitudes and types of 

uncertainties confronting system planners have increased with the growth of policies to 

encourage generation from renewable sources, the possibility of regulation to control carbon 

emissions, and volatility in the prices of fossil fuels, particularly natural gas. Consequently, 

explicit consideration of uncertainty is required to mitigate risk in generation expansion 

planning models.  

Extended, long-term time horizons are an additional integral component in generation 

expansion models, for the following reasons [47, 61]: 

 Initial capital investment is expensive and the lifetime of a power plant normally ranges 

from 25 to 60 years. Therefore, a long term perspective is necessary to accurately 

evaluate alternative build schedules. 

 Multiple organizations must be involved in the planning process, as the addition of new 

power plants typically imposes additional capacity requirements on transmission and 

distribution facilities. Consequently, organizations must coordinate their activities, which 

occur over extended time horizons. 

  Long lead times may be required to obtain regulatory approval for plant construction, 

acquire land on which to build plants, negotiate fuel procurement contracts, and build up 

the required infrastructure. These considerations also imply that there is limited 
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maneuverability for investment decisions as new information becomes known or 

underlying conditions change. 

Generation planning decisions must also account for operational impacts. Because the 

demand for electricity varies with diurnal, weekly, and seasonal patterns, different 

combinations of generating units are most cost-effective at different times, depending on fuel 

prices, availability of intermittent energy sources, and equipment outages.  

Uncertainty regarding future operational conditions arises from several sources. Load 

(demand) growth has always been a significant source of uncertainty in generation expansion 

planning. Historically, it is estimated through combinations of climate forecasts, population 

expansion or movement models, projected economic conditions, and technology evolution. 

The world-wide annualized growth rate in electricity demand increased from 2% in 1990 to 

4% in 2007 [25], and is projected to grow at an annual rate of 2% until 2030 [35]. Growth in 

electricity demand in the US gradually slowed from 9% per year in the 1950s to less than 

2.5% per year in the 1990s. Recently, from 2000 to 2007, the average US growth rate in 

demand dropped to 1.1% per year. The slowdown in growth is projected to continue until the 

year 2030 [7]. In contrast, China—currently one of the fastest-growing economies—has 

experienced an average 14% annualized growth rate in electricity demand over the past five 

years [25].  

The introduction of new generation technologies is also becoming important, as 

environmentally friendly renewable energy is receiving increased public support. The US 

government is considering greatly increasing the percentage of wind energy, to 20% of total 

electricity generation by 2030 [7], compared to 9% in 2008 [26]. Some state mandates 
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specify a proportion of capacity rather than generation. For example, Iowa plans to increase 

the Renewable Portfolio Standard (RPS) to 20% of generation capacity by 2020, compared 

with 7% in 2007. Most of this increase will be obtained from wind energy due to the 

abundance of wind resources in the Midwest US. However, integration of wind generation 

into the electrical grid is problematic due to output uncertainty, caused by weather (wind 

speed) dependence [12, 13, 15, 21, 40, 42]. Hence, instead of a “capacity factor” (an average 

output over a year), the concept of a “capacity credit” is introduced as a measure of 

generation potential. The capacity credit captures the output of wind generation in the worst 

case; i.e., the minimal amount of power that the grid can rely upon at any given point in time. 

This quantity can be estimated using various methods [50–52, 67]. In addition to wind 

generation, clean coal [27], solar, new nuclear, and bio-based technologies should also be 

considered in generation expansion planning. 

Environmental concerns, including emission penalties/constraints and other sources 

of regulatory uncertainty, also have a large potential influence on the cost effectiveness of 

investments in different types of power plants [39]. In particular, potential policies to limit or 

reduce greenhouse gas emissions would have a significant impact on generation planning. 

For the past several decades, tax incentives have yielded increased growth in renewable 

generation sources. The renewable electricity production tax credit (PTC) [28] was 

established as an incentive to promote renewable energy alternatives, and has significantly 

affected the growth of wind generation sources over the past 10 years [7]. It is likely that the 

PTC program will be extended in the near future. 
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Prices and availabilities of fuels, particularly for coal and natural gas, contribute 

additional sources of uncertainty in generation expansion planning. The price of coal is 

considered generally stable, with an average annualized growth rate of 2%. Natural gas 

prices fluctuate in a more unpredictable way [7], mainly depending on economic and 

technology development growth rates. The proportion of electricity generated by natural gas 

in the US in 2008 was approximately 21% [29]. Because natural gas is typically the most 

expensive fuel, power plants using natural gas are considered peak load generation units. Due 

to its large degree of uncertainty, consideration of natural gas price is critical in generation 

expansion planning. 

Generation expansion planning involves two primary costs: investment costs and 

generation costs. Investment costs are dictated by decisions specifying how many units of 

each power plant type to build in each year of the planning horizon. Operational costs depend 

on the quantity of electricity generated by each plant in each year of the planning horizon, 

and fuel costs associated with such generation. To mitigate costs, investment decisions must 

take into account future uncertainties, which in turn affect operational costs. At the same 

time, investment decisions must satisfy additional requirements, including satisfaction of 

electricity demand, power generation reliability, energy resource limitations, financial 

budgets, maximum carbon emissions, and the minimum required electricity generation 

proportion for renewable energy. 

In this paper, we formulate a model for the long term generation expansion problem, 

with the goal of deciding how many units of each type of power plant to construct, for each 

year in the planning horizon. The optimization objective in our model is to minimize the sum 
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of initial investment costs and subsequent generation costs, while taking into account future 

uncertainty in both electricity demand and natural gas price. From a modeling perspective, 

we focus on support for the following issues:  

 Identifying an appropriate model for the evolution of demand and fuel price uncertainty 

over time. 

 Constructing a set of scenarios that adequately represent the evolution of uncertainty. 

 Developing a test problem instance, with realistic parameter values, for the US Midwest. 

 Specifying a reasonable level of risk aversion in view of the trade-off between reducing 

expected cost and reducing risk. 

We formulate our model as a two-stage stochastic mixed-integer program, 

considering both minimization of the expected cost and the Conditional Value-at-Risk 

(CVaR). Given the computational difficulty of our model, we investigate methods for 

quantifying confidence intervals associated with the computed costs, using a limited number 

of scenarios to capture the space of future outcomes. Finally, we investigate the similarity of 

solutions obtained with different sets of scenarios, in order to assess the practical impact of 

scenario reduction on the actual decisions recommended by the model. These two 

computational issues are largely ignored in the literature on stochastic optimization and 

energy planning, yet are crucial when presenting potential solutions to decision-makers. 

The remainder of the paper is organized as follows. We begin in Section 2.2 with a 

brief review of state-of-the-art methodologies for solving the generation expansion planning 

problem. In Section 2.3, we present a two-stage stochastic programming model for our 

generation expansion planning problem, accounting for both expected cost and Conditional 
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Value-at-Risk. In Section 2.4, we further discuss how to realize the computational 

implementation, including modeling assumptions, fitting of random variables’ continuous 

time distributions, and generation of discrete scenarios for the case study. Section 2.5 details 

a case study based on the Midwest US electric power system. A procedure for computing 

confidence intervals on solution costs is introduced in Section 2.6; experimental results 

regarding both confidence intervals and solution similarity across different sets of scenarios 

are presented in Section 2.7. Finally, we conclude in Section 2.8. 

2.2 Background  

Both general capacity expansion planning problems and power-specific generation 

expansion problems have been studied for decades, yielding a range of different optimization 

models and algorithmic techniques for solving these models. We now briefly survey this 

literature, in order to place our research in the broader context.  

Stochastic programming has been used frequently to address uncertainties in general 

capacity expansion problems [1, 4, 14, 55]. Robust optimization has also been studied in the 

context of general capacity expansion, to reduce cost variance over the range of possible 

scenarios [45, 54, 66]. Ahmed, King and Parija [3] describe a multistage stochastic 

programming model for capacity expansion, introduce a reformulation technique to reduce 

computational difficulty, and analyze various heuristic methods for solving large problem 

instances. Ahmed and Sahinidis [2] introduce a fast approximation scheme based on linear 

programming to solve a multi-stage stochastic integer programming model of a capacity 

expansion planning problem. State-of-the-art optimization methods under uncertainty are 
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reviewed in [62], and include stochastic programming, robust optimization, probabilistic 

(chance-constrained) programming, fuzzy programming, and stochastic dynamic 

programming.  

Independent of the specific model formulation, capacity expansion planning problems 

can pose significant computational challenges, due to the number of scenarios used to model 

the uncertainty, the number of decision stages in the planning horizon, the scale of the system 

under consideration, and the presence of integer decision variables. Thus, significant research 

has been devoted to the development of decomposition techniques to solve these problems 

more efficiently, and heuristics for obtaining high-quality approximate solutions in tractable 

run-times. 

Laurent [41] summarizes different methodologies for scenario discretization. 

Scenario tree is constructed to model and evaluate the risk of the stochastic uncertainty of 

electricity portfolios [17]. Several techniques for constructing multi-stage scenario tree are 

presented in [16]. A scenario construction algorithm successively reducing the tree structure 

by bundling similar scenarios is introduced in [22]. Høyland and Wallace propose a 

generalized method applied to both single-stage scenarios and multi-stage scenarios [24]. The 

latter method is applied in this paper to generate the scenarios for the multi-year case study. 

The state-of-the-art in generation (as well as transmission) expansion planning, in 

addition to an overview of optimization under uncertainty, is described in [61]. Here we 

mention only a few highlights. A collection of stochastic programs is discussed in [23]; one 

of the applications involves electricity generation capacity expansion with uncertainty arising 

from different modes of demand. A game-theoretic model to solve the generation expansion 
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problem in a competitive environment is described in [9], motivated by the desire to analyze 

differences in the solutions relative to a centralized expansion plan. Multi-objective 

optimization has been applied to the generation expansion problem, in order to balance 

minimization of cost, environmental impact, imported fuel, and fuel price risk [49, 68]. 

Dynamic programming has also been used to solve the generation expansion problem [8, 39, 

53]. 

Parallel genetic algorithms have been introduced to solve a deterministic power 

generation expansion problem [20]; Firmo and Legey [19] also use a genetic algorithm to 

yield approximate solutions to a related problem. A comparison of metaheuristic techniques 

for solving the generation expansion planning problem is described in [38]. 

In the electric power industry, some commercial packages for generation expansion 

planning are available, including EGEAS [18], ProMod [30], and Plexos [31, 32]. Most of 

these packages are based on deterministic models, although Plexos also offers support for 

two-stage stochastic programming. These packages are also widely used in practice to 

approximate a stochastic programming model to address the future uncertainties by solving 

the different deterministic models based on one of the specific generated future scenarios at 

each time. Robust optimization is approximated in an ad hoc way by identifying common 

elements of the optimal plans found for different futures. 

We chose to formulate a two-stage stochastic programming model to represent our 

generation expansion planning problem for three main reasons. First, the decisions can be 

segmented naturally into discrete investment decisions that must be adopted before uncertain 

quantities are realized and continuous operational variables that can include recourse to 
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demand and cost realizations. Second, historical data are available for fitting models for the 

evolution of the uncertain variables. Third, the risk of unacceptably high cost can be 

controlled in a tractable way by including linear constraints to compute Conditional Value-at-

Risk.  

2.3 A Two-stage Stochastic Mixed-integer Program for 

Generation Expansion Planning 

 

We now describe a two-stage mixed-integer stochastic programming model to 

represent our generation expansion planning problem. We begin in Section 2.3.1 with a 

discussion concerning high-level assumptions underlying our optimization model. Section 

2.3.2 introduces notation for model sets and associated indices and parameters, while Section 

2.3.3 details the decision variables. Model constraints are described in Section 2.3.4. Finally, 

expected cost and Conditional Value-at-Risk minimization objectives are described 

respectively in Sections 2.3.5 and 2.3.6.  

2.3.1   Modeling Assumptions 

We assume that the optimization objective is to minimize some function of the 

combined investment and generation costs for pre-existing and newly constructed power 

plants, over the entire planning horizon. Additionally, because power outages can be both 

costly and disruptive, we impose monetary penalties for unmet demand. For example, 

outages might result in direct economic impact due to damage incurred by the electricity 

infrastructure, loss of data or breakdown of an assembly line, loss of life due to hospital 
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service disruptions, and failure of public services. Finally, the model constraints enforce the 

following requirements, which are essential in generation expansion models: (1) because 

electricity currently cannot be stored economically, we require the generated electricity to 

meet the demand in each sub-period; (2) the load for each type of generator must be less than 

its planned capacity; and (3) the total number plants of each type built over the planning 

horizon must be less than a predefined maximum imposed due to budget, resource, or 

regulatory limitations. 

2.3.2   Notation: Sets, Indices, and Parameters 

Our generation expansion optimization model is expressed in terms of the following 

sets, described in conjunction with the corresponding index notation: 

    : Types of generators. 

    : Years in planning horizon. 

    : Load duration curve sub-periods. 

   : Set of sub-periods t in year y. 

    : Year y to which sub-period t belongs. 

    : Scenario paths representing parameter uncertainties. 

Model parameters common to all scenarios are given as follows: 

   : Cost per MW capacity to build a generator of type g, discounted to the beginning of 

the construction period. Units are $/MW. 

   
   : Maximum output capacity of installed generators of type g. Units are MW. 

   : Number of hours in sub-period t. 
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   : Maximum output rating of generators of type g per hour. Units are MW. 

   
   : Maximum number of generators of type g that can be constructed over the 

planning horizon. 

   : Existing number of generators of type g at the beginning of the planning horizon. 

   : Penalty cost for unserved energy. Units are $/MWh. 

  : Annual interest rate, for cost discounting purposes. 

As discussed in Section 2.4, uncertainty regarding future demand and fuel prices is 

captured by discrete scenarios. The following parameters are defined for each scenario  

 : 

     : Generation cost per MW hour for generators of type g in sub-period t, for 

scenario . Units are $/MWh. 

    : Demand per hour in sub-period t for scenario  . Units are MW. 

   : Probability that scenario   is realized;          

2.3.3   Decision Variables 

Decision variables in our optimization model are partitioned into investment and 

operations categories, as follows: 

       : (Investment) Number of generators of type g to be built in year y. 

       : (Operations) The power generated by generators of type g per hour in sub-

period t for scenario scenario  . Units are MW. 

      : (Operations) The unserved load per hour in sub-period t for scenario scenario . 

Units are MW. 
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This partitioning of decision variables corresponds to that of a two-stage stochastic 

(mixed-integer) program [64]. The first-stage variables correspond to investment decisions 

over the planning horizon, and are determined prior to resolution of any uncertainty. The 

second-stage variables correspond to operational decisions, and are scenario-dependent 

because their evaluation is delayed until it is clear which specific scenario has been realized. 

In contrast to a multi-stage stochastic programming formulation [3], there is no recourse 

associated with the investment plan; all decisions are made up-front, and cannot be modified 

as uncertainty about the future is resolved. 

A deterministic mixed-integer programming formulation can be seen as a special case 

of the two-stage stochastic formulation when there is a single scenario that occurs with 

probability 1. The parameters in such a formulation can be taken as the planner’s best guess 

of the outcomes of uncertain quantities, or computed as the expectation over the range of 

anticipated future outcomes. 

2.3.4   Constraints 

As indicated in Section 2.3.2, we impose limits on the total number of units for each 

generator type built over the planning horizon. This requirement is expressed as follows, 

constraining the cumulative number of units built during the planning horizon: 

        
                                                         (2-1) 

For each scenario, we impose energy balance constraints to enforce equality between 

the demand and the sum of electricity generated and unmet demand: 

                                                         (2-2) 
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Finally, we bound the output for each type of generator by the aggregate output rating 

of both existing and newly constructed units through each year in the planning horizon: 

       
               

                                 (2-3) 

The numbers of decision variables and constraints in the deterministic (single 

scenario) mixed-integer program are then respectively |T | + |T ||G| + |G||Y| and |T | + |T ||G| + 

|G|. For the two-stage mixed-integer stochastic program, the number of decision variables 

and constraints are |T || | + |T || ||G| + |G||Y| and |T || | + |T || ||G| + |G|, respectively. Of 

the decision variables, |G||Y| are constrained to take integer values. 

2.3.5   Minimization of Expected Cost 

The most widespread optimization objective in two-stage stochastic programming is 

minimization of the expected cost; i.e., the sum of the first stage cost and the expected 

second stage costs. We denote our generation expansion optimization model with the 

expected cost minimization objective, subject to the constraints defined in Section 2.3.4, as 

GEP-EC. Formally, this objective is defined as follows: 

               

      
            

                                         (2-4) 

where the per-scenario operational costs    are defined as: 

   
                                  

                                        (2-5) 

This cost formulation neglects operational costs beyond the study period, which could 

introduce end-of-study distortions in the first-stage decisions. To avoid those distortions, 

estimates of the discounted remaining operational costs could be added in the final period for 

each scenario. We did not attempt this in the case study because, in practice, the expansion 
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planning problem is typically solved repeatedly over a rolling horizon and only the 

investment decisions for early years, which are less prone to distortion, are implemented. 

The formulation GEP-EC is known as the extensive form of the stochastic program, 

in which the variables and constraints for all scenarios are explicitly represented in a single, 

large mathematical program. The extensive form can in principle be solved directly via 

commercial solvers, which is the approach we take in generating the results described in 

Section 2.7, because we want to make comparisons between provably optimal solutions. 

However, the difficulty of these problems can be considerable, especially in the presence of 

discrete decision variables such as the number of generators built. Consequently, researchers 

have developed decomposition techniques to accelerate the solution times for large-scale 

stochastic programs [59, 65]. 

2.3.6   Minimization of Conditional Value-at-Risk 

The standard two-stage stochastic programming model does not take into account the 

potentially significant risk that the cost of one or even many scenarios far exceeds the 

expected cost. Various metrics have been introduced to formally quantify risk, including 

worst-case cost, cost variance, and the cost of a specific quantile (Value-at-Risk or VaR). 

Alternatively, one can focus on the cost expectation of the most costly l fraction of scenarios; 

i.e., the tail-conditional expectation. An easily-computed representation of the tail-

conditional expectation has recently attracted significant attention in the risk analysis 

community. This metric is known as Conditional Value-at-Risk, or CVaR [57, 58]. CVaR is 

parameterized by l,      , which represents the fraction of high-cost scenarios that are to 

be considered by the metric. CVaR has a number of mathematically appealing properties 
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(specifically, relative to VaR), and is particularly useful in optimization contexts because it 

can be expressed and minimized as a simple variant (as we discuss below) of a two-stage 

stochastic program [63]. 

We denote the generation expansion optimization model with CVaR minimization as 

the objective, subject to the constraints defined in Section 2.3.4, as GEP-CVAR. Formally, 

the CVaR optimization objective is defined as follows:  

                      
      

 
                                           (2-6) 

where   is an additional first-stage decision variable representing the 1-l-quantile of total 

investment and operational cost over all scenarios and the    denote additional second-stage, 

per-scenario variables. For scenario  ,    is the maximum of 0 and the excess cost beyond   

if the excess is positive. To compute CVaR, it is also necessary to impose per-scenario 

constraints as follows: 

   
       

             

                                                     (2-7) 

                                                                    (2-8) 

The quantity    in (2-7) represents the discounted operational cost incurred under 

scenario ω, as defined in (2-5). The upper tail of the cost distribution represents high 

operational costs caused by high fuel prices and penalties from failing to satisfy large 

demands. 

In practice, CVaR solutions are often viewed as excessively costly, so CVaR is often 

combined with expected-cost minimization in a weighted multi-objective scheme. For further 

discussions on the computation of CVaR, we refer to [63]. 
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2.4 Scenario Tree Generation 

We base our case study and test problem instance on real data we collected from the 

Energy Information Administration (EIA), the Midwest Independent System Operator 

(MISO), and the Joint Coordinated System Planning Report 2008 (JCSP) [37]. EIA is an 

independent statistical agency providing data, analysis and future projection within the U.S. 

Department of Energy (DOE). MISO is an independent system operator and the regional 

transmission organization that monitors the transmission system and provides safe and cost-

efficient delivery of electric power across the Midwest US and one province, Manitoba, in 

Canada. JCSP is a joint organization in the Midwest and Northeast regions of the US 

formally initiated in November 2007. Both economic and reliability studies have been 

conducted by the JCSP to develop a conceptual overlay to accommodate the potential 20% 

wind energy mandate in the future years. Year 2008 is considered as the reference year in our 

case study, since all the assumptions made for the later years are based on the 2008 data. 

The uncertainties considered in the case study are both electricity demand and natural 

gas price. We now consider stochastic process models for these quantities, and propose a 

methodology to construct a sample-path tree that represents these processes, providing input 

to our GEP-EC and GEP-CVAR optimization models where paths through the tree are used 

as scenarios.  

2.4.1   Stochastic Process 

In order to model the future uncertainties over multiple years, demand and natural gas 

price, respectively represented by D(y) and G(y), are considered as continuous time random 
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variables. We need to fit a model for their evolution over time. Because both the demand and 

natural gas price are usually modeled with an annual growth rate relative to the previous 

year, which is equivalent to geometric growth over time, and these annual growth rates in 

different years are taken to be mutually independent, we need to find an appropriate 

stochastic process which best satisfies these characteristics to model the uncertainties. 

2.4.2   Geometric Brownian Motion 

A continuous time stochastic process Z(y) is a Brownian motion with drift coefficient 

  and variance parameter    if Z(0) = 0, Z(y) has stationary and independent increments, and 

Z(y) is normally distributed with mean    and variance     [60].  

If Z(y) is a Brownian motion with drift coefficient μ and variance parameter   , then 

the stochastic process X(y) =       is defined as a geometric Brownian motion (GBM), which 

is widely used for modeling financial markets [33]. It has the statistical property that w(y) = 

   
      

    
  is normally distributed with mean    and standard deviation   . In addition, the 

log ratios w(y) are mutually independent.  

Considering that the continuous time random variables, annual electricity demand and 

natural gas price, also possess the similar characteristic, with an annual geometric growth 

rate uncorrelated in different years, GBM might be a reasonable assumption for the random 

variables D(y) and G(y).  

2.4.3   Verification of Geometric Brownian Motion 

To test whether both the annual electricity demand and the natural gas price can be 

represented as GBM, we obtained hourly demand data from years 1991 to 2007 for the 
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Midwest region from the MISO website, and calculated the average annual natural gas price 

data from EIA by state in Midwest region from years 1970 to 2006, weighted by their 

consumption.  

The annual data were first transformed to logarithm format by computing       

    
      

    
  and           

      

    
 , and then statistical software JMP was used to fit a 

normal distribution to the data. By performing a goodness of fit test on each data series, we 

found that both       and       are consistent with observations from normal distributions, 

         and         , respectively with    = 0.0072,    = 0.0094,    = 0.037 and    = 

0.082. The related JMP outputs are shown in Figs. 2-1 and 2-2. They show the histogram, 

moment and normal probability plot of the log ratios of the demand and natural gas price in 

the Midwest region respectively from years 1991–2007 and years 1970–2006. Since the 

Shapiro-Wilk test statistic for log ratios of demand is 0.951568 and p-value is 0.5149, it fails 

to reject the null hypothesis that the data is from the normal distribution. Similarly, since the 

Shapiro-Wilk test statistic for log ratios of natural gas price is 0.985879 and p-value is 

0.9237, it fails to reject the null hypothesis that the data is from the normal distribution as 

well. Thus, we conclude that the log-normal distribution is a reasonable representation for 

each data set. 

Besides the test of normal distribution, we also test the correlation between      

   and      , and between        and      , for each y and, furthermore, confirm the 

independence of successive values of both       and      . The related JMP outputs are 

shown in Figs. 2-3 and 2-4. The    for the log ratios of demand is 0.208272 and the    for 
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the log ratios of natural gas price is 0.041814, and the p-values are respectively 0.0756 and 

0.2387; thus, we fail to reject the null hypothesis of zero correlation. 

Another way to verify the independence is through the autocorrelation test with 

different lags of the time series model in JMP. The null hypothesis is that there is no 

autocorrelation. For the time series for historical demand in Fig. 2-5, the p-value 0.0742 with 

lag = 1. For the time series for historical natural gas price in Fig. 2-6, the p-value is 0.2086 

with lag 1. Both of the p-values fail to reject the null hypothesis, which indicates there is no 

autocorrelation for the time series data with lag 1. Therefore, the assumption that both D(y) 

and G(y) follow GBM processes is supported by these tests [46]. 

 

Figure 2- 1 Log Ratios of Annual Demand in the Midwest US from Year 1991-2006 
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Figure 2- 2 Log Ratios of Annual Average Natural Gas Prices in the Midwest US from 

Year 1970-2006 

2.4.4   Statistical Properties of Random Variables 

Because          
      

    
  is normally distributed with mean    and standard 

deviation   , the ratio 
      

    
  exhibits the log-normal distribution with mean    and standard 

deviation   . Consequently, we can derive the following statistical properties of the GBM 

using the following formulas for the log-normal distribution [36]: 

  
      

    
      

  
 

                                              (2-9) 

    
      

    
      

 
          

 
                              (2-10) 

   
      

    
      

 
       

 
                               (2-11) 
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Let x(y) denote the actual value of x in year y. Assume that the initial year of the 

expansion planning is year 0, and that there is no uncertainty in x(0). Given (2-9)–(2-11) and 

the condition that X(0) = x(0), we then derive conditional formulas for the evaluation of X(y) 

as follows: 

                                            

                                                                  

       
      

    
          

  
 

                                         (2-12) 
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         (2-14) 

From (2-12)–(2-14) for the conditional statistical properties, the conditional 

expectation and variance in later years both depend on the values for the previous year. 

However, the skewness is independent over the years, and thus remains the same, depending 

only on σX. The results of applying (2-12)–(2-14) to the annual demand and annual natural 

gas price in the Midwest region are summarized in Table 2-1. The correlation value between 
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the two random variables in each year was also obtained by JMP as shown in Fig. 2-7. In 

general, the annual natural gas price and electricity demand both have increasing trends. 

The    value for the linear regression model of the annual demand versus the annual 

natural gas price is 0.75002, with a p-value <0.0001. Thus we reject the null hypothesis of 

zero correlation. A correlation of 0.866 was indicated by the JMP outputs. Hence, there is a 

strong positive correlation between the total annual electricity demand and average annual 

natural gas price over the years. 

 

Figure 2- 3 Scatter Plot of Annual Demand Quantities over Successive Years in the 

Midwest US from Year 1991-2006 
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Figure 2- 4 Scatter Plot of Annual Average Natural Gas Prices over Successive Years in 

the Midwest US from Year 1970-2006 

 

 

Figure 2- 5 Time Series Autocorrelation with Lag=1 for Demand in the Midwest US 

from Year 1991-2006 

 

 

Figure 2- 6 Time Series Autocorrelation with Lag=1 for Demand in the Midwest US 

from Year 1970-2006 
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Table 2- 1 Statistical Properties of Random Variables Representing Natural Gas Price 

and Demand in the Mid-west US over Planning Horizon 

Random variables Statistical property First year (y = 1) After first year (y > 1) 

Demand   

(Billion MWhs) 

D(y) 

Mean 1.00727 d(0) 1.00727 d(y-1) 

Std. dev. 0.009469 d(0) 0.009469 d(y-1) 

Skewness 0.028 0.028 

Natural gas price 

($/thousand cubic feet) 

G(y)  

Mean 1.041188 g(0) 1.041188 g(y-1) 

Std. dev. 0.085521 g(0) 0.085521 g(y-1) 

Skewness 0.25 0.25 

Gas price and demand Correlation 0.866 0.866 

 

 

Figure 2- 7 Correlation between Total Annual Demand and Average Annual Natural 

Gas Price in the Midwest US from Year 1991-2006 
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2.4.5   Scenario Generation Method 

Given distributional characterizations of uncertainty in future demand and natural gas 

price, we now consider the issue of generating a tree from those distributions. The paths 

through this tree will form the scenarios used as input to our GEP-EC and GEP-CVAR 

optimization models. We use (2-12)–(2-14) to specify statistics for one-step ahead samples. 

Let X and q respectively denote the set of representative values and the associated probability 

vector, and let S denote a set of labels for the elements in X. Next, let      denote a single 

pair of representative values for demand and gas price with label     and probability   . 

Finally, let         denote the value of the ith statistical measure of interest computed for X 

and q. For example, if        represents the sample mean vector   , then         is 

computed as_        .  

To generate a sample of paths through a tree that accurately represents the uncertainty 

space of future demand and natural gas price, we use a procedure introduced by Høyland and 

Wallace [24]. The foundation of this procedure is the following optimization model, in which 

the objective is to match as closely as possible statistical properties of the original continuous 

random variables and those of a set of discrete values that we will treat as if they were 

samples from those random variables:  

                        
 

   ,                                  (2-15) 

        ,                                                 (2-16) 

                                                         (2-17) 

In this formulation, P (indexed by i) denotes a set of statistical measure of interest, 

and       denotes the value of the ith statistical measure quantified in the context of the 
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original continuous random variables. The squared sum of differences between       and the 

corresponding sampled quantity         are then minimized. The weights   provide a 

mechanism to specify the relative importance to modelers of the various measures    . In 

our case study, we define P to include the mean and variances of both random variables (with 

   = 2), the skewness of both random variables (with    = 1), and the correlation between the 

random variables (with    = 1). The constraints (2-16) and (2-17) ensure the    are 

interpretable as probabilities.  

Høyland and Wallace discuss the issue of how to select an appropriate number of 

scenarios |S| for a given optimization problem. To avoid both underspecification and 

overspecification, the chosen number of statistical measures |P| should be similar to the 

number of decision variables in (2-15). In our case study, we have a two-dimensional 

scenario variable to represent demand and natural gas price, and the probability needs to be 

decided. The number of decision variables is |S|(2+1)−1, since all the scenario probabilities 

adding to 1 eliminates one degree of freedom. Regarding the number of the statistical 

specifications, there are 7, including the mean, standard deviation, and skewness of each of 

the two random variables, as well as their correlation. We use |S| = 3 because |S|(2 + 1) − 1 ≈ 

7. Hence, the number of branches from each node in the tree representing the stochastic 

process is determined to be 3.  

The scenario generation problem is a nonlinear mathematical program with a 

nonlinear objective function and linear constraints. We solve this problem using the 

nonlinear solver Tomlab/SNOPT, available from Matlab, which iterates to a locally optimal 

solution from a specified starting point. We use multiple starting points to heuristically 



www.manaraa.com

35 

 

 

identify a posited global optimum. The initial points for the 3 value vectors, X and associated 

scenario probabilities, q are assumed to be                 ,         ,    

       ,         ,                 ,          The minimum possible 

objective value is expected to equal zero, if the specifications are consistent. However, 

because (2-15) is generally not a convex optimization problem, the final solution may be 

only locally optimal even with different initial conditions. If the derived statistical properties 

are still close to the specification, a locally optimal solution is also acceptable. However, if 

severe inaccuracy occurs, it must be resolved either resetting the weight coefficient    or 

increasing the number of initial starting points. 

Once the 3 representative value pairs for 2009 are generated based on      and     , 

we generate the 2010 values similarly. Conditional statistical properties are first specified 

based on the 3 generated 2009 value pairs by applying (2-12)–(2-14). Then, another 3 

discrete pairs are generated using (2-15)–(2-17).  

The complete stochastic process tree can be recursively constructed through the end 

of the planning horizon. A fragment of the tree for our case study is shown in Fig. 2-8. Each 

column in the tree represents a single year, and each tree node represents one possible 

outcome for that year. For each node, the number at the top of the corresponding block 

represents the product of the conditional probabilities for that specific scenario path up to that 

node (i.e., the absolute probability of occurrence; for nodes in the final period, these are the 

path probabilities   ). The numbers in the parenthesis at the bottom of each block indicate 

the scenario-specific values for both demand and natural gas price. In the initial year 2008, 
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     = 0.57 and      = 9.37. The units for demand and natural gas price are respectively 

billion MWhs and $/thousand cubic feet. 

 

Figure 2- 8 A Fragment of the Stochastic Process Tree for a Multi-year Planning 

Horizon, Showing the Subpath Probability, Total Demand for the Year, and Annual 

Average Natural Gas Price 

2.5 A Realistic Problem Instance 

We now describe in detail a realistic instance of our generation expansion planning 

problem, derived from system data associated with the Midwest US. In particular, we 

describe the sources for all fixed and uncertain parameters, primarily drawn from EIA, 

MISO, and JCSP sources. The computational studies described subsequently in Section. 2.7 

are based on this instance. 



www.manaraa.com

37 

 

 

2.5.1   Demand 

We divide each year in the planning horizon into three sub-periods corresponding to 

demand blocks: peak, medium, and low. Hourly demands during the year are ordered in a 

decreasing sequence, forming a load duration curve (LDC). The three demand blocks are 

then formed by imposing break points at the top quarter, middle half, and bottom quarter of 

the load curve. An example is provided in Fig. 2-9, which shows the hourly load for 2008 in 

the Midwest US; data are obtained from the real-time market report of MISO [34]. The 

demand for each sub-period, which actually represents nonconsecutive hours in the year, is 

simply taken as the corresponding area under the LDC. By considering only three demand 

blocks, we reduce the problem size and also retain information about the chronological 

demand variability. 

 

Figure 2- 9 Load Duration Curve in Year 2008 (3 Demand Blocks) 

Demand data for the 3 demand blocks corresponding to these 2008 data (converted to 

a non-leap-year basis) is summarized in Table 2-2. The multiplier    for demand block t is 

the ratio of average hourly demand in that block to the overall average demand for the year. 
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Because future LDCs are unknown, we assume they are formed via incremental additions to 

the reference year 2008 (ignoring leap years) and the blocks are proportional to those in the 

reference year 2008. That is, given a realization of total energy demand      in year y under 

the stochastic process path  , for        the average hourly demand     in MW is 

     
      

       
        . Because the stochastic demand process is incremental over the 

reference year, we set the initial numbers of generating units    to zero accordingly. 

Table 2- 2  Baseline Sub-period Hourly Demand 

t Block Hours (h) Load (MWh)    

1 Peak 271 2.427E+7 1.38 

2 Base 6556 4.437E+8 1.04 

3 Shoulder 1933 1.006E+8 0.80 

 Total 8760 5.685E+8  

2.5.2   Generator Data 

We assume six different candidate generator types are available for new construction 

in all time periods of the planning horizon: G = { BaseLoad, CC, CT, nuclear, wind, IGCC}. 

Here, CC and CT respectively denote combined cycle and combustion turbine power plants, 

both of which are fueled by natural gas. Integrated gasification combined cycle (IGCC) 

power plants are fueled by coal. 

With the exception of wind farms, the calculation of generator build cost is based on 

the capital expenditure profile suggested by the JCSP [37]. Table 2-3 shows the fraction of 

overnight investment costs actually expended in each year to build each type of generator. 

For wind farms, because the construction time is estimated at two years [37], the capital 
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expenditure is simply split evenly. To obtain   , the total cost to build a single generator of 

type g, we sum the present value in each construction year using the discount rate r. For 

example, to obtain    for a CC plant, we first multiply the overnight build cost by the capital 

expenditure percentage for each year, yielding $1.833(0.25) million for the first year, 

$1.833(0.5) million for the second year, and $1.833(0.25) million for the third year. These 

values are then discounted by r to the first year, and summed to form   . Table 2-4 reports 

both the overnight investment cost and the final calculated build cost cg for each generator 

type g. We assume that the newly built generators are able to generate electricity beginning 

in the year that the expansion decision is made; i.e., the lead time for building and installing a 

generator is ignored. 

Table 2- 3  Capital Expenditure Profile for Generators 

Year Baseload CC CT Nuclear Wind IGCC 

1 0.02 0.25 0.5 0.01 0.5 0.02 

2 0.03 0.5 0.5 0.01 0.5 0.03 

3 0.25 0.25  0.01  0.25 

4 0.3   0.01  0.3 

5 0.3   0.01  0.3 

6 0.1   0.02   

7    0.03   

8    0.2   

9    0.3   

10    0.3   

11    0.1   
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Table 2- 4  Overnight Cost for Generators 

Technology Overnight cost ($/MW) Build cost   ($/MW) 

Baseload 1.833E+6 1.446E+6 

CC 0.857E+6 0.795E+6 

CT 0.597E+6 0.575E+6 

Nuclear 2.928E+6 1.613E+6 

Wind  1.713E+6 1.650E+6 

IGCC 2.118E+6 1.671E+6 

 

Table 2- 5  Generation Cost Related Parameters for the Generators in the First Year 

Technology Fuel price ($/Mbtu) Heat rate (Btu/KWh) Efficiency Variable OM cost ($/MWh) 

Baseload 3.37 8844 0.4 4.70 

CC 9.11 7196 0.56 2.11 

CT 9.11 10842 0.4 3.66 

Nuclear 0.93E-3 10400 0.45 0.51 

Wind  0 N/A N/A 5.00 

IGCC 3.37 8613 0.48 2.98 

 

Power generation costs are divided into two components: (1) fuel costs and (2) 

variable operation and maintenance (OM) costs. All the related parameters for calculating the 

generation cost for year 2008 are shown in Table 2-5 from JCSP [37]. From Table 2-5, we 

can easily calculate the generation costs. For        and all stochastic process paths  ,      

is found by converting the fuel price to $/MWh using the heat rates and efficiencies, then 

adding the variable OM cost. In later years we made the escalation assumptions of 2% annual 

growth rate in the fuel prices (coal, nuclear) and 3% annual growth rate in the variable OM 

cost, as suggested by JCSP [37]. For the CC and CT technologies, the fuel price in $/MBtu is 
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obtained by dividing the natural gas price in the corresponding nodes of the stochastic 

process tree by 1.028 MBtu per thousand cubic feet. 

The installed capacity and generator ratings are based on the JCSP [37] and the 

generator ratings are calculated by their installed capacity multiplied by the forced outage 

rate (FOR), also from the JCSP [37]. The installed capacity is for calculating the investment 

cost of the power generation expansion, and the rating is considered as a maximum capacity 

for the electricity generation in the future daily operation. The relevant assumptions are 

shown in Table 2-6. For the maximum units to build constraint over the whole planning 

horizon, we used the assumptions shown in Table 2-7. 

Table 2- 6  Installed Capacity and Generator Rating for Generators 

Type Baseload CC CT Nuclear Wind IGCC 

Generator g 1 2 3 4 5 6 

Install capacity (MW),   
    1200 400 400 1200 500 600 

Generator rating (MW),   
    1130 390 380 1180 175 560 

 

Table 2- 7  Max Units to Build for Generators 

Type Baseload CC CT Nuclear Wind IGCC 

Max units built,   
    4 10 10 1 45 4 

2.5.3   Other 

We assume an annualized interest rate of r = 0.08, based on data reported by the JCSP 

[37]. This rate is used to discount all future expenditures (capital investments and operational 

costs) to the reference year 2008. The penalty,   , for unserved load is 100,000 $/MWh. 
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2.6 Scenario Sampling and Cost Confidence Intervals 

In this section, we describe procedures for computing statistical bounds on the 

optimal objective function values for both the GEP-EC and GEP-CVAR optimization 

models. In the following, we use the term “cost” loosely to denote either the expected value 

objective (2.4) or the CVaR objective (2.6).We begin in Section 2.6.1 by discussing the 

motivation behind such procedures. The specific procedure we employ is detailed in Section 

2.6.2. We conclude in Section 2.6.3 with a discussion of the key practical issues surrounding 

the use of such bounding procedures in the context of our optimization models. 

2.6.1   Motivation 

In any stochastic optimization model in which uncertainty is treated via Monte Carlo 

sampling (in contrast to analytically), practical questions arise involving the nature of the 

sampling strategy employed. From the standpoint of solution validation, a key question is: 

Did we use a sufficient number of samples to obtain a solution with the required level of 

accuracy? From a computational standpoint, a related question of significant practical 

importance (particularly in the case of stochastic mixed-integer programs) is: What is the 

smallest number of samples with which we can obtain a solution possessing the required 

level of accuracy? The remainder of this sub-section is devoted to discussing computational 

procedures to answer these two questions. 

Let    denote the (infinite) space of all possible scenarios to our generation 

expansion planning problem, defined using the stochastic processes introduced in Section 

2.4. Further, let Ω denote a finite set of scenarios generated from    via sampling. We 
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assume that the process used to generate Ω is sufficiently representative of the underlying 

continuous probability space; i.e., that our sample of 19,683 scenarios accurately reflects the 

statistics of the reference stochastic process. In practice, directly solving either GEP-EC and 

GEP-CVAR using Ω is computationally infeasible, requiring at a minimum several weeks of 

run-time on a modern high-performance workstation. Thus, we focus on the analysis of sub-

samples     . 

In our generation expansion planning models, the first-stage decisions     represent 

the primary variables of interest, while the second-stage variables      and     are derived 

variables used to quantify the operational impacts given particular    . Further, given fixed 

values for the     variables, the values for the      and     variables can be immediately 

determined by solving the resulting linear program for each scenario independently. Thus, in 

order to assess the accuracy of a particular solution, we consider our confidence in the total 

cost as a function of the first-stage     variables.  

Let         denote the minimal total cost of either GEP-EC (2.4) or GEP-CVAR 

(2.6) given a set of scenarios   , subject to the constraint that the first-stage decision variables 

U are fixed at v if v is feasible. If v is not feasible, then          . Finally, let    denote 

the minimal total cost for one of our optimization models if it could be computed for the 

entire set of scenarios    (i.e.,             
  ). 

2.6.2   A Multiple Replication Procedure 

Once we obtain what we believe to be a good first-stage solution   , we wish to 

compute a bound on the gap between the total cost of    and   . One way to perform such 
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validation is to sample additional groups of scenarios (those not used to compute   ), 

optimize the corresponding extensive forms, and use differences in the resulting total costs 

relative to    to compute statistical bounds. 

Mak, Morton and Wood [44] propose a method for computing a confidence interval 

for the total cost that could be achieved if it were possible to use extremely large sample 

sizes; i.e., sample sizes so large that the solution to the full stochastic program using all 

scenarios from    is perfectly approximated. This method is known as the Multiple 

Replication Procedure (MRP). Consider a finite universe of N available scenarios, from 

which      are drawn at random and without replacement. The extensive form of a 

stochastic program is then solved using the sample of    scenarios, resulting in a “reference” 

or baseline solution   . The remaining N−   scenarios are then partitioned into equal-sized 

groups, each containing n scenarios. To enforce the equality constraint, small numbers of 

scenarios may be discarded. The MRP takes as input a parameter       specifying a 

    confidence level and generates    sets of “validation” scenario groups              , 

such that each set has equal probability. 

A high-level description of the MRP is as follows (loops are combined in the actual 

implementation; we consider the common random number streams variant described in [44]): 

1. For each validation group              , compute a gap statistic as follows: 

                
 

         

2. Compute the average gap statistic    and the sample standard deviation   . 
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Each computation of    in Step 1 involves solving two optimization problems. First, 

the computation of           requires solution of a stochastic program extensive form given 

fixed first stage decisions   ; in the case of GEP-EC and GEP-CVAR, this simply requires 

the solution of a linear program due to the fixing of all first-stage integer variables. Second, 

the computation of              requires the solution of a stochastic mixed-integer 

program extensive form. Thus, depending on the values of N,   and   , the MRP can be 

computationally expensive. 

Given the gap statistics computed above, the approximate      -level confidence 

interval for the optimality gap on the total cost of baseline solution    is then given as: 

      
         

   
  

where        , is the   tail value for a t -distribution with      degrees of freedom.  

2.6.3   Research Questions 

Several fundamental computational questions arise when applying the MRP in 

practice. These questions affect both the practical utility of the MRP and the interpretation of 

results obtained using the procedure. The experimental methodology described subsequently 

in Section 2.7.3 is explicitly designed to yield data to provide at least preliminary answers 

such questions, as outlined below. 

Foremost among these questions is the selection of parameter values for the 

procedure, specifically for    and   . There is presently little empirical guidance to suggest 

specific values for MRP parameters. At one extreme, there is strong motivation to use a large 

(relative to N)    value, in order to obtain an accurate reference solution. On the other hand, 
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we want to leave a sufficient number of scenarios for purposes of validation; too few 

scenarios will likely lead to either small    or n, which may in turn lead to unnecessarily 

conservative confidence intervals. Further, given N −    samples for validation, there is the 

question of how to select   . One could argue that small values of    yield more accurate 

solutions. However, the use of small    also leads to conservative confidence intervals, and it 

is therefore necessary to balance both the number and size of the validation groups    . 

Fundamentally, as we show next in Section 2.7, different values of the MRP parameters do 

lead to different results, thus motivating the need to explore trends in the MRP parameter 

space. 

At a higher level of abstraction, there is the question of stability of MRP results: 

Given a fixed set of scenarios, how variable are results obtained with different partitions of 

those scenarios among the baseline    group and the    validation groups? This variability 

has not been addressed previously in the literature, and as we show in Section 2.7, its 

presence affects both the aggregation and interpretation of results from the MRP procedure. 

Next, there is the up-front question of how to select a proper value of N. In our case 

study, we conjectured that only a fraction of the 19,683 scenarios were ultimately required to 

obtain reasonably small confidence intervals. This conjecture was based on a series of 

experiments described below in Section 2.7.2, in which we sub-sample an increasing number 

N of scenarios, solve the resulting stochastic program extensive form, and observe the 

stability in the total cost as a function of N. We observe stability by approximately N = 1,000, 

so we conjectured that at most this number of scenarios would be required to obtain 

reasonably tight confidence intervals on optimal solution cost. This conjecture is 
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substantiated by the experiments discussed in Section 2.7. However, we observe that in 

general, selection of N is more art than science, requiring a careful balance between the value 

of N, the computational time associated with the MRP procedure, and the desired tightness of 

the obtained confidence intervals. 

Finally, in addition to consideration of cost confidence intervals, there is the question 

of solution similarity: How different are the solutions obtained under different MRP 

parameterizations or replications? Answers to this question directly affect the decision-

maker, as it is possible that even if observed solution costs are disparate, the underlying 

solutions may not be—implying that the existence of cost variability may have little impact 

on any final investment decisions. 

2.7 Experimental Results 

We now report and analyze the results obtained by executing the MRP on our two 

optimization models. In Section 2.7.1, we briefly discuss the computational tools used to 

model and solve our GEP-EC and GEP-CVAR formulations. Our experimental methodology 

involving the MRP is then detailed in Section 2.7.3. We present results for GEP-EC and 

GEP-CVAR in Sections 2.7.4 and 2.7.5, respectively. Finally, we conclude with a discussion 

regarding the structural similarity of solutions obtained with different parameterizations of 

the MRP in Section 2.7.6. 

2.7.1 Implementation 

We modeled the GEP-EC and GEP-CVAR two-stage stochastic programs using the 

PySP software package [56, 70]. PySP is a Python-based, open-source tool co-developed and 
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maintained by Sandia National Laboratories, the University of California Davis, Texas 

A&M, and others. It is part of IBM’s COIN-OR open-source initiative for operations 

research software [10]. The data corresponding to the case study instance described in 

Sections 2.4 and 2.5 was encoded in PySP’s native data format, similar to that used by the 

commercial modeling tool AMPL [5]. Both the PySP model and data files can be obtained by 

contacting the authors. 

Stochastic programs in PySP are specified in a scenario-oriented manner. The base 

deterministic (i.e., single-scenario) optimization model must be specified first. Then, users 

specify the data defining the scenario tree for the problem instance under consideration, 

including the stages, tree nodes, branching probabilities, and variable-to-stage assignments. 

Finally, data specifying parameter values for each scenario is supplied. PySP then uses this 

data to construct an internal representation of the corresponding stochastic program, by 

creating instances for each scenario in the scenario tree and constructing constraints to 

enforce variable non-anticipativity at each composite node. A comprehensive description of 

the use and implementation of PySP can be found in [70]. 

We leverage integrated algorithms within PySP to execute all MRP trials described 

below. Specifically, PySP provides a generic MRP implementation, and functionality to 

generate and solve extensive forms of stochastic programs. PySP leverages commercial 

solvers to obtain solutions to the mixed-integer extensive forms, including CPLEX 12.2 [11], 

which was used for all experiments. All experiments were executed on a modern 2.93 GHz 

Intel Xeon 8-core workstation (each core is hyper-threaded), with 96 GB of RAM, running 

Linux. 
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2.7.2 Cost Stability and Extensive Form Run-times 

In order to conduct experiments concerning how to best allocate N scenarios between 

those used to compute the best possible solution and those used to compute a confidence 

interval, we first conduct experiments to determine the largest computationally feasible N 

and to verify that the optimal solution values obtained using the full N scenarios are 

reasonably stable. The optimal solution cost of both GEP-EC and GEP-CVAR will stabilize 

toward an asymptotic value as     . It is an empirical question as to how fast this 

convergence occurs for finite sample sizes. However, knowledge of the empirical 

convergence rate in the low sample count regime suggests a heuristic for selecting the 

parameter N associated with tests of the MRP procedure. 

Table 2- 8  The Stability of Optimal Solution Costs for the GEP-EC and GEP-CVAR 

Optimization Models. Columns Report the Solution Cost (USD) and Run-time (wall 

clock seconds), as a Function of the Number of Scenarios N 

N Optimal solution cost Run-time 

GEP-EC GEP-CVAR GEP-EC GEP-CVAR 

10 1.91175E+10 2.18873E+10 17.49 13.19 

100 1.81437E+10 2.49147E+10 57.93 145.9 

250 1.72728E+10 2.45407E+10 986.45 1622.11 

500 1.74896E+10 2.38776E+10 5176.26 1547.48 

1000 1.77731E+10 2.36481E+10 52442.93 8402.54 

 

In Table 2-8, we show the optimal solution cost and the run-time required to solve the 

corresponding stochastic program extensive form, for a range of N. For GEP-CVAR, we use 

 = 0.05. The scenarios in each sample were drawn randomly and without replacement from 

the full scenario tree (containing all 19,683 scenarios); different random seeds were used for 
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each value of N, so any overlap in the selected scenarios is by chance. Run-time is reported 

in terms of wall clock time, while costs are measured in USD. We observe that CPLEX 12.2 

is multi-thread capable, and routinely uses 16 threads during execution of these problems on 

our compute hardware. Thus, execution times on less powerful platforms will be significantly 

longer. 

Analyzing the results in Table 2-8, we observe significant growth in run-time as a 

function of N. This is consistent with the observed empirical difficulty of stochastic mixed-

integer programs reported in the literature, particularly at this scale. Further, the memory 

requirements are non-trivial, exceeding 8 GB of RAM for the larger runs. Given the large 

run-times at N = 1000, it is clear that solution of either model given our complete scenario 

tree is intractable via the extensive form approach, and would likely require significant effort 

even leveraging decomposition-based approaches—which in turn would require significant 

implementation effort and tuning. There is no consistent trend in the run-time differences 

between the GEP-EC and GEP-CVAR runs. The large difference at N = 1000 is an artifact of 

the particular sample chosen; mixed-integer solvers are known to exhibit significant 

variability in run times as problem data is changed. 

The optimal solution costs for both GEP-EC and GEP-CVAR vary significantly for 

     , but start to stabilize once      . When N = 1000, we further observe (not 

reported) significant stability across replications of the experiment. These two trends lead us 

to heuristically select N = 1000 for all replications of the MRP procedure reported 

subsequently. 

2.7.3 Experimental Methodology 
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To experiment with ways to allocate the scenarios in a fixed sample between finding 

a reference solution and computing its confidence interval, we draw a random sample of N = 

1000 scenarios from the full scenario tree described in Section 2.4. We then execute a full 

factorial experiment for both the GEP-EC and GEP-CVAR optimization models, executing 

the MRP for each of the following combinations of parameters: 

–                         

–                   

These values were selected to obtain results over the spectrum of MRP parameterizations. As 

discussed in Section 2.6.3, there is little empirical evidence to guide selection of    and   . 

For each combination of    and    we execute five MRP trials, varying the random 

seed used to partition the set of N scenarios into the set    of    scenarios, which is used to 

compute the reference solution, and the    validation groups, which are used to compute a 

confidence interval. To reduce variance, we use identical sets of random seeds across trials 

involving different    and   . For each trial, we record the confidence interval width on the 

optimal solution cost      ≡          for level   = 0.05. The particular value of   does not 

affect the qualitative nature of the results presented below (for example, moving from   = 

0.05 to   = 0.01 roughly doubles the confidence interval width in the worst case), and was 

selected arbitrarily. For all GEP-CVAR runs, we use   = 0.05. 

2.7.4 Expected Cost Minimization 

The results obtained from executing the MRP on our GEP-EC optimization model are 

shown in Table 2-9. For each MRP parameterization, the table shows results for both a 
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single, arbitrary MRP trial and aggregated statistics taken over all five MRP trials. Units for 

entries associated with       and the 95% confidence interval (CI) are given in billions USD. 

Table 2- 9  Results of Applying the Multiple Replication Procedure (MRP) to the GEP-

EC optimization model. The MRP Input Parameters are Reported in the Columns 

Labels   ,   , and n. Outputs are Reported for the MRP as well as Summary Statistics 

taken over Five MRP Trials to Verify the Stability of the Procedure. 

      n MRP results Verification: five MRP trials 

      95% CI       std. dev. 95% CI std. dev. 

70 2 465 17.362 0.021 0.42 0.22 

70 5 186 17.362 0.055 0.42 0.19 

70 10 93 17.362 0.051 0.42 0.20 

70 20 46 17.362 0.124 0.42 0.19 

70 40 23 17.362 0.290 0.42 0.19 

140 2 430 17.214 0.026 0.34 0.05 

140 5 172 17.214 0.070 0.34 0.04 

140 10 86 17.214 0.074 0.34 0.03 

140 20 43 17.214 0.101 0.34 0.02 

140 40 21 17.214 0.241 0.34 0.03 

280 2 360 17.151 0.053 0.39 0.03 

280 5 144 17.151 0.074 0.39 0.03 

280 10 72 17.151 0.101 0.39 0.03 

280 20 36 17.151 0.241 0.39 0.02 

280 40 18 17.151 0.452 0.39 0.03 

420 2 290 17.377 0.017 0.24 0.04 

420 5 116 17.377 0.039 0.24 0.05 

420 10 58 17.377 0.110 0.24 0.03 

420 20 29 17.377 0.224 0.24 0.03 

420 40 14 17.377 0.522 0.24 0.02 

560 2 220 17.377 0.020 0.14 0.04 
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Table 2- 9  (continued) 

560 5 88 17.377 0.063 0.14 0.04 

560 10 44 17.377 0.103 0.14 0.05 

560 20 22 17.377 0.198 0.14 0.07 

560 40 11 17.377 0.571 0.14 0.07 

 

We begin by considering the results obtained for one replication of the MRP, whose 

outputs are reported in the columns labeled “     ”and “95% CI”. Recall that we use (for a 

given MRP trial) a fixed random seed across experiments involving different combinations of 

   and   . This seed is used to randomize the list of scenarios, which are then sequentially 

partitioned into the baseline set containing    scenarios and the    validation groups. 

Consequently, the value of       is identical in all trials in which only    is varied. We first 

observe that the cost        of the baseline solution    is remarkably stable as     is varied. 

This is consistent with the experiments reported in Section 2.7.2. Further, we would expect 

(and indeed observe) more stability in Table 2-9 because scenarios are accumulated as     is 

increased—due to the use of a common random number seed across the individual MRP 

trials, and the sequential partitioning of the scenarios. 

Next, we analyze the widths of the 95% confidence interval on the cost       as    and 

   are varied, considering a single MRP trial. The largest CI width obtained is approximately 

571 million USD, representing less than 3.5% of corresponding total cost of 17.377 billion 

USD. These results strongly suggest that accurate estimates of the optimal cost to our GEP-

EC optimization model can be obtained using a remarkably small number of scenarios—

especially relative to the full scenario tree. Unexpectedly, we observe that CI widths for a 
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fixed    are generally increasing in   ; the tightest confidence intervals appear at    = 2, 

despite the trivial number of degrees of freedom in the resulting t test. This behavior is 

partially explained by the fact that for even modest   , the number of samples in each group 

is too small to observe stability in      . However, this explanation fails to account for the 

fact that the pattern holds even when the baseline solution is obtained with    = 70. 

Fundamentally, the increase in the number of degrees of freedom in the t distribution is not 

offset by the stability in the total costs obtained from the validation scenario groups. Recall 

that the CI width is proportional to both the standard deviation of the sample optimality gap 

and the value of the t -statistic, and is inversely proportional to the square root of the number 

of scenario groups. The CI width monotonically increases as a function of    for the GEP-

EC optimization model (this behavior is not universal, but depends on both the specific 

optimization problem under consideration and the particulars of the MRP parameterization) 

because the sample optimality gap variance overcomes the benefit of increased     and the 

number of degrees of freedom in the t distribution. Given a fixed   , CI widths are 

reasonably consistent across different   . Remarkably, the lowest CI widths obtained 

represent less than 0.5% of      . 

Finally, we consider the variability over multiple trials of MRP results, given fixed     

and   . Such variability is generated by varying the random seed used to order the scenarios 

prior to partitioning them into the baseline and validation groups. The standard deviations of 

      reported in Table 2-9 indicate that the stability of the MRP increases—as expected—

with growth in   ; taking a larger proportion of the N = 1000 scenarios in Ω will necessarily 
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decrease variability. However, even with modest   , the standard deviations are comparatively 

small, indicating less than 5% deviation from the single-trial MRP result. The variability in 

CI widths obtained by the MRP also rapidly decreases as    is increased, roughly leveling off 

once       . Fundamentally, the five-trial MRP results indicate that the most accurate 

results are obtained using a large number of scenarios to form the baseline solution   , 

yielding minimal negligible variability in both       and CI width. 

Overall, the results presented in Table 2-9 illustrate that very high-quality estimates 

of the minimal total cost for the GEP-EC optimization model can be obtained by using 

surprisingly small numbers of scenarios. Specifically, the computed CI widths range from 

less than 0.2% to roughly 3.5% of the baseline solution cost      . Given the nature of long-

term planning models—particularly the modeling assumptions employed and the range of 

uncertainties not explicitly considered—such tight confidence intervals strongly suggest that 

further efforts should be focused on improving the optimization model and uncertainty 

characterization, rather than using larger scenario samples in the existing GEP-EC model. 

Table 2- 10  Results of Applying the Multiple Replication Procedure (MRP) to the GEP-

CVAR Optimization Model. The MRP Input Parameters are Reported in the Columns 

Labels   ,   , and n. Outputs are Reported for the MRP as well as Summary Statistics 

taken over Five MRP Trials to Verify the Stability of the Procedure. 

      n MRP Verification: five MRP trials 

      95% CI       std. dev. 95% CI std. dev. 

70 2 465 23.341 0.265 0.70 1.97 

70 5 186 23.341 0.365 0.70 1.78 

70 10 93 23.341 0.509 0.70 1.93 

70 20 46 23.341 0.784 0.70 1.93 

70 40 23 23.341 1.260 0.70 1.98 
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Table 2- 10  (continued) 

140 2 430 23.575 0.113 0.55 1.36 

140 5 172 23.575 0.199 0.55 1.19 

140 10 86 23.575 0.349 0.55 1.15 

140 20 43 23.575 0.635 0.55 1.12 

140 40 21 23.575 1.240 0.55 1.26 

280 2 360 23.534 0.338 0.50 0.25 

280 5 144 23.534 0.454 0.50 0.22 

280 10 72 23.534 0.557 0.50 0.17 

280 20 36 23.534 0.975 0.50 0.19 

280 40 18 23.534 1.588 0.50 0.21 

420 2 290 23.630 0.487 0.38 0.29 

420 5 116 23.630 0.461 0.38 0.28 

420 10 58 23.630 0.755 0.38 0.18 

420 20 29 23.630 1.113 0.38 0.23 

420 40 14 23.630 1.817 0.38 0.18 

560 2 220 23.907 0.150 0.13 0.26 

560 5 88 23.907 0.282 0.13 0.15 

560 10 44 23.907 0.548 0.13 0.16 

560 20 22 23.907 0.825 0.13 0.18 

560 40 11 23.907 1.551 0.13 0.19 

 

2.7.5 Conditional Value-at-Risk Minimization 

The results obtained for executing the MRP on our GEP-CVAR optimization model 

are shown in Table 2-10. Considering the results for an individual MRP trial, we again 

observe stability in      ---despite the more sensitive nature of the optimization metric. 

However, the associated confidence intervals are substantially wider than those observed for 
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the GEP-EC model. On average, the solution costs are approximately 40% larger than the 

GEP-EC results, given fixed    and   . While the growth in cost is necessary, the magnitude 

of growth is highly problem-dependent. Relative to other studies involving planning models 

in unrelated domains, e.g., see [69], the increase is modest. We observe trends in MRP 

parameter-result correlations that are similar in most cases to those observed for GEP-EC. 

Specifically, CI widths are monotonically increasing functions of    given a fixed   . 

The largest difference between the single-trial GEP-EC and GEP-CVAR MRP results 

are the computed confidence interval widths—which range from approximately 1% of the 

base cost to over 9% of the base solution cost. However, even with a limited number of 

scenarios, parameterizations of the MRP with modest    and small    indicate that the 

optimality gaps associated with the baseline solutions are relatively small; i.e., within a few 

percent. 

Next, we consider variability of MRP trials given fixed    and   . The variability in 

both       and the confidence interval widths are modestly higher than those observed for 

GEP-EC. The increase can be attributed to the sensitivity of CVaR; there are comparatively 

few high-cost scenarios, and the results are as a consequence sensitive to the distribution of 

those high-cost scenarios among the baseline and validation scenario groups. Overall, the 

increased variability in MRP results indicates that GEP-CVAR solution costs should be 

interpreted more carefully than those for GEP-EC; i.e., that there is a significant risk of 

deviation from the computed CVaR cost metric. 

2.7.6 The Structural Similarity of Solutions 
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Confidence intervals on optimal solution costs are important pieces of information for 

decision-makers, but they only capture one dimension of “stability” in a solution. A 

complementary dimension of solution stability considers the degree to which the solutions 

themselves differ, independent of any variability that may occur in the objection function. 

In order to make statements regarding comparisons of many solutions, a metric in the 

space of solutions is needed. As we shall see, a metric that takes into account covariances 

will require some degree of dimension reduction in the metric space. Suppose our solutions 

are represented by column vectors of length p. 

The Euclidean similarity or “distance” metric for two solutions x and y can be written 

as                        , where   is the p by p identity matrix. The Euclidean 

metric is very unsatisfying for quantifying the difference between solutions to the GEP-EC 

and GEP-CVAR optimization models, because it ignores (for example) the fact that a 

difference of 2 CT generating units in a pair of solutions is conceptually (to domain experts) 

much less significant than a difference of 2 nuclear generating units. This situation could be 

remedied if we somehow knew an appropriate variance for each generator type. With this 

information, we could form a p × p matrix S with the standard deviations on the diagonal, 

and instead use the distance metric                        . 

A more subtle issue is the consideration of correlations that would be expected 

between generator selections. To address this concern, we consider the Mahalanobis distance 

[43] metric, given by: 
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where   is a p × p positive definite matrix. In particular, if   is an appropriate covariance 

matrix, then we have a distance that is scaled for both variance and covariance. The 

Mahalanobis metric is widely used to characterize distances between vectors and groups of 

vectors (e.g., see [6, 48].) There are some theoretical properties of the Mahalanobis metric 

that can provide quantitative insights under specific conditions. In particular, if x has a multi-

variate normal distribution       then   
       obeys a    distribution with p degrees of 

freedom. 

When comparing solutions to generation expansion planning models, the investment 

variables are generally the drivers of structural differences of interest to decision makers. To 

reduce the problem dimension, we consider the total number of each type of generator over 

time prescribed by a particular solution   ; i.e., we will examine the vector whose 

components are formed from the components        
 

 , for all    . 

Table 2-11 reports statistics for the Mahalanobis distances for both the GEP-EC and 

GEP-CVAR optimization models. The statistics are computed using the five    reference 

solutions obtained across replications of the MRP procedure, for the range of   . The 

aggregation procedure is then as follows. For each    and each optimization objective (GEP-

EC and GEP-CVAR), we form a “population” using the    solutions associated with the other 

   values. Considering a fixed   , twenty replicates are then available for use in estimating the 

mean and covariance. Each solution is represented by investments in each generator type 

aggregated over time, as described previously. In our particular study, there is no variance in 

the number of CC and BaseLoad generator types, so they are ignored, leaving vectors with p 

= 4. For reference, the 95
th
 percentile of a    with four degrees of freedom is 9.49. 
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Table 2- 11  The Average Pair-wise Mahalanobis Distances for the Generation 

Expansion Planning Investment Decisions Aggregated over Time, for Both the GEP-EC 

and GEP-CVAR Optimization Objectives 

   Objective Function 

EC CVAR 

70 17.3 12.1 

140 3.7 7.9 

280 5.8 4.5 

420 3.0 2.5 

560 5.3 5.4 

 

The solutions generated for    =70 differ significantly from the solutions for other  

   for both optimization objectives, which is not unexpected given the small number of 

samples used to form the reference solutions   . However, the average pair-wise solution 

distance rapidly drops as    grows, albeit somewhat more slowly for GEP-CVAR than for 

GEP-EC (specifically, the drop at    =140 is not as punctuated in GEP-CVAR as for GEP-

EC. However, in both cases the differences are very small once     280. 

A key question is: Are the solutions obtained for GEP-CVAR statistically and 

qualitatively different than those obtained for GEP-EC. To get a quantitative measure of the 

distance we take as our population the solutions for GEP-EC and drop those for   = 70 since 

they seem to be different. That is, we take as our population the solutions from MRP 

replicates for GEP-EC with    140, so we have 20 vectors of aggregated investment 

decisions that can be used to estimate a mean and covariance for the sample. The smallest 

Mahalanobis distance to the aggregated investment decisions for any of the GEP-CVAR 

solutions was 108 and the average distance to those solutions was 281. Hence, we have 
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strong evidence based on the metric that the GEP-CVAR solutions are structurally much 

different from the GEP-EC solutions. 

 

Figure 2- 10  The GEP-EC Solution with    = 420 and the GEP-CVAR Solution with    = 

560 

 

To illustrate the differences between solutions obtained using the GEP-EC and GEP-

CVAR optimization models, we make use of solutions with tight confidence intervals. The 

lowest CI widths obtained for GEP-EC represent 0.12% of the cost estimate with    = 420,    

= 2 and n = 290. The total cost is 17.337 billion USD and the 10-year optimal expansion plan 

is shown in left hand side of Fig. 2-10. For GEP-CVAR, the lowest CI widths obtained 

represent 0.36% of the point estimate with     = 560,    = 2 and n = 220. The CVaR value is 

23.907 billion USD and the 10-year optimal expansion plan is shown in right hand side of 

Fig. 2-10. The GEP-CVAR planning decision is a bit different from the GEP-EC plan shown 

in the left side of Fig. 2-10. It greatly increases the wind power capacity, which has almost no 
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operational costs, and decreases the number of gas-fired CT plants. The latter occurs because 

the GEP-CVAR solution avoids the risk of high gas prices in the future. The total cost of the 

planning decision with more CT units is subject to the natural gas price volatility, as well as 

the high electricity demand. Besides, GEP-CVAR should be more costly than GEP-EC since 

it is more likely to suggest building sufficient generation capacity to ensure meeting high 

demand in a small percentage of extremely high-cost scenarios. 

Overall, our analysis of solution stability reinforces the general conclusions obtained 

with the MRP procedure. In the case of the GEP-EC optimization model, the    reference 

solutions obtained using a small number of scenarios are stable in terms of both cost and 

solution structure. In the case of GEP-CVAR, the solution stability results indicate that even 

with larger-than-desirable confidence intervals on solution cost, the underlying structural 

characteristics of the resulting solutions are not significantly different. In other words, the 

cost uncertainty does not appear to translate into significant differences in the 

recommendations provided to a potential decision maker. 

2.8 Conclusions 

We have introduced a novel formulation of the generation expansion planning 

problem, with the goal of determining the types and quantities of available generator types to 

build during each year of a long-term planning horizon. We formulate the problem as a two-

stage mixed-integer stochastic program, considering minimization of both expected cost and 

the Conditional Value-at-Risk. The optimization models incorporate two sources of 

uncertainty regarding the future: natural gas fuel prices and demand for electricity. We 

propose a stochastic process model describing the evolution of these parameters, and use this 
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model to construct a scenario tree for input to the stochastic program. As a case study, we 

introduce a planning problem based on the US Midwest generation infrastructure. 

Direct solution of a large-scale, mixed-integer stochastic generation expansion 

planning problem is computationally prohibitive. Consequently, the full scenario tree must be 

down-sampled for purposes of computational tractability. This downsampling leads to a 

variety of computational issues, which must be addressed to accurately represent the 

approximated solution to a decision maker. Specifically, it is necessary to quantify the 

stability of the approximate solution—error is necessarily present due to the approximation 

of a stochastic process by a scenario tree small enough to facilitate tractable solution of the 

corresponding stochastic program. To address the issue of solution cost stability, we apply 

the Multiple Replication Procedure of Mak, Morton, and Wood [44] to compute confidence 

intervals on the optimality gap. Our results indicate that the optimality gaps obtained when 

minimizing expected cost are very small, while those obtained when minimizing Conditional 

Value-at-Risk are large enough to be of concern. Independent of cost, the solutions obtained 

under different samplings of scenarios are structurally very similar for both optimization 

metrics. This suggests that the presence of even moderate optimality gaps for solution cost 

have little impact on the final solution recommended to a decision-maker. Our results 

indicate that limited-scale sampling of a very large scenario tree is sufficient in our particular 

problem to yield high-accuracy solutions. 
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CHAPTER 3 CAPACITY EXPANSION IN THE INTEGRATED SUPPLY 
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Abstract 

Constraints in fuel supply, electricity generation and transmission interact to affect 

the welfare of strategic generators and price-sensitive consumers. We consider a mixed 

integer bilevel programming model in which the leader makes capacity expansion decisions 

in the fuel transportation, generation, and transmission infrastructure of the electricity supply 

network to maximize social welfare less investment cost. Based on the leader's expansion 

decisions, the multiple followers including the fuel suppliers, ISO and generation companies 

simultaneously optimize their respective objectives of cost, social welfare, and profit. The 

bilevel program is formulated as a mathematical program with complementarity constraints. 

The computational challenge posed by the discrete character of transmission expansions has 

been managed by multiple model reformulations. A lower bound provided by a nonlinear 

programming reformulation increases the efficiency of solving a binary variable 

reformulation to global optimality. A single-level optimization relaxation serves as a 

competitive benchmark to assess the effect of generator strategic operational behavior on the 

optimal capacity configuration. 
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3.1 Introduction 

We consider an integrated supply network for an electricity market including fuel 

transportation, electricity transmission and individual generation companies. The decision 

makers in each level of the supply network have distinct objectives to optimize. The fuel 

suppliers, who deliver the fuel to the power generation companies, want to minimize their 

fuel transportation cost that includes both the fuel cost and fuel delivery cost. The 

independent system operator (ISO) who settles the locational marginal prices (LMPs) and 

dispatches the electricity through the transmission network, aims to maximize the total 

welfare of both the sellers and the buyers of electricity in a wholesale market. The individual 

generation companies, who buy the fuel, generate electricity and sell it at the LMPs, wish to 

maximize their profits. All of these decision makers optimize simultaneously in the 

electricity market subject to capacity constraints.  

The overall welfare of market participants could be increased by capacity expansions 

to relieve constraints. Expansions at different levels and locations in the supply network 

could increase the availability of low-cost fuel, enable higher utilization of efficient 

generation resources, and level out the LMPs. These decisions are the responsibility of the 

facility owners, who naturally determine capacity investments to achieve their own 

objectives. However, such decentralized expansion decisions may not be optimal for the 

whole integrated electricity supply system. In this paper, we examine the decisions that a 

leader would make on behalf of the overall system, to maximize the total welfare less the 

total investment cost. The results of optimizing from this global perspective reveal the 

interactions among constraints at different levels and identify bottlenecks in the integrated 
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supply network. They could be used as a target in the development of consistent incentives or 

regulations to encourage the lower level players to make individual decisions that more 

closely approximate the global optimum for the overall system.  

Considering both the investment and operational levels of decision-making, we 

propose a mixed integer bilevel programming model. The upper level leader makes decisions 

to expand the capacity of the integrated supply system. Once the capacity expansion 

decisions are made, lower level decision makers including the fuel suppliers, the ISO and the 

generation companies simultaneously make their optimal operating decisions to realize their 

respective objectives. We set up a simple two-period model in which capacity investments 

are made in the first period based on equivalent hourly costs, and the system is operated in 

the second period, which represents a typical hour in a future scenario. The model could be 

elaborated to account for sequential expansions over time and/or multiple future scenarios of 

demand, fuel costs, and other uncertain conditions.  

Given the capacity decisions in the integrated supply network, the simultaneous 

optimization of the lower level sub-problems, which mutually interact, leads to an 

equilibrium problem. It has been thoroughly studied and solved as a mixed complementarity 

problem (MCP) [1] and validated by comparison with a computational agent simulation [2]. 

In the restructured wholesale electricity market, the prices submitted by the generator 

companies are determined according to their marginal costs, which depend mostly on the fuel 

costs [3]. Here we assume that the fuel suppliers, represented for simplicity by a single 

fictional fuel dispatcher, decide the quantities of the fuel shipped over various routes to 

minimize the cost of satisfying demands of all of the generator companies. The ISO manages 
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the electricity wholesale market where the buyer (inverse) demand functions are linear 

functions of the LMPs, and makes the electricity dispatch decision. The individual generation 

companies, considered as Cournot competitors, pay attention to the price differentials among 

the electricity nodes and determine their electricity quantities to sell under a type of bounded 

rationality [4]. 

In general, mixed integer bilevel programming (MIBLP) problems are hard to solve. 

Moore and Bard [5] presented the challenge of the MIBLP problem and proposed a series of 

heuristics to efficiently find a good feasible solution. DeNegre et al. [6] further proposed a 

branch and cut method to improve the branch and bound algorithm in [5]. Colson et al. [7] 

reviewed methodologies and applications of bilevel programming problems and described 

their connections with mathematical programs with equilibrium constraints (MPECs). The 

bilevel programming technique was introduced to model the integrated system of multiple 

participants usually with different objective functions. Many applications involving 

restructured electricity markets have formulated the ISO market clearing problem as the 

lower level. Hu and Ralph [8] modeled a game among the consumers and generators 

submitting the bids to the ISO in the upper level. There are also formulations considering the 

bidding strategy of the generation companies in the upper level [9, 10]. Generation and 

transmission expansion decisions by individual participants can also be modeled as the upper 

level with the lower level representing the market outcomes [11, 12]. 

In our model, the integer variables appear only in the upper level. Therefore, the 

Karush–Kuhn–Tucker (KKT) optimality conditions can still be applied to the lower level 

problems. Upon applying the KKT conditions to all the sub-problems, the bilevel problem 
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becomes a mathematical program with complementarity constraints (MPCC). The MPCC is a 

special case of MPEC, which has attracted great attention for the past decade as more and 

more engineering and economic applications involve equilibrium modeling. Ferris and Pang 

[13] gave a comprehensive summary of the engineering and economic applications of MPCC 

and the available solution algorithms. Its solution requires an equivalent reformulation of 

complementarity constraints and global convergence the solution can be guaranteed only 

under certain conditions. Hu et al. [14] presented a methodology to find the global optimal 

solution of a linear program with linear complementarity constraints by reformulating the 

constraints with binary variables. 

The contributions of this paper are fourfold: (1) We investigated a fuel transportation, 

generation and transmission expansion problem of an integrated electricity supply system in 

which an equilibrium in a restructured market is reached by the fuel suppliers, generator 

companies and ISO solving simultaneous and interdependent optimization problems. Instead 

of letting each market player make his own expansion decision, we find the optimal 

expansion decision for the whole integrated system from the global perspective. (2) We 

incorporated discrete transmission expansion decisions by using binary variables in the direct 

current optimal power flow constraints. (3) The problem is formulated as a bilevel 

programming problem. The challenge posed by the discrete decision variables makes it 

difficult to achieve global optimality. We provided three problem reformulations to bound 

the objective and find a global optimum. (4) The model and solution procedure are illustrated 

by a small case study that shows how the global expansion decision affects the LMPs of each 
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node in the transmission grid, the buyers’ surplus, the sellers’ surplus and the transmission 

rents.  

3.2 Model Formulation 

Table 3- 1  Sets of Nodes and Arcs 

Set Description Indices 

N Electricity nodes i, j 

F Fuel supply nodes g 

L Transmission lines ij 

A Fuel supply lines gj 

   Set of electricity nodes supplied by fuel supply node g j 

   Set of fuel supply nodes supplying the electricity node j g 

 

Table 3- 2  Decision Variables 

Decision Variable Description 

Upper Level 

nU Fuel transport capacities after expansion 

nV Generation capacities after expansion 

z Binary decision variables for new transmission lines 

q Demand satisfied at electricity nodes 

Lower Level 

x Quantities of fuel delivered 

θ Voltage angles at electricity nodes 

 f Electricity flows on transmission lines 
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Table 3- 2  (continued) 

 y Generation amounts at electricity nodes 

 

η 

(Scalar) price at the reference electricity 

node 

 

Table 3- 3 Parameters 

Parameter Description 

a Intercepts of electricity demand prices as linear functions of quantities 

b Slopes of electricity demand prices as linear functions of quantities 

c Costs per MWh-equivalent of fuel transported 

fc Investment cost for fuel transportation network expansion 

gc Investment costs for generation expansion 

tc Investment costs for transmission line expansion 

     Maximum values for voltage angles 

     Minimum values for voltage angles 

  Nodal electricity price premia at electricity nodes  

  Nodal prices for fuel delivered to generators 

V Generation capacities at electricity nodes 

U Capacities of fuel supply arcs 

K Capacities of transmission lines 

W Quantities of fuel available at fuel supply nodes 

B Susceptances of transmission lines 

 



www.manaraa.com

78 

 

 

We formulate a bilevel capacity expansion problem of an integrated electricity supply 

network, where we also optimize the sub-problems of fuel suppliers, generators and the ISO 

in the lower level. 

Table 3-1 indicates the sets of nodes and arcs of the integrated electricity supply 

network. Tables 3-2 and 3-3 respectively give the notation for both decision variables and 

parameters of the model. All fuel quantities are expressed in MWh equivalents. The variable 

η is a scalar and all the other variables and parameters are vectors. All fuel quantities are 

expressed in MWh equivalents. Appendix 3.A shows how to incorporate heat rates and 

efficiencies of converting fuels to electricity.   

3.2.1 Mixed Integer Bilevel Program (MIBLP) 

The objective function of the upper level is to maximize the social welfare including 

the buyers’ surplus, power producers’ surplus and transmission rents, less the investment 

costs of expansions in fuel transportation, transmission network and power generation 

capacities. We expand capacity of the existing assets for both the fuel network and 

generation. For the transmission network, we assume the capacity expansions are realized by 

building new lines selected from a set of candidates. All investment costs are linear.  

   2

, , , ,

1
max

2
j j j j gj gj gj gj gj j j j ij ij ij

nU nV z q x
j gj A gj A j N ij L

b q a q c x fc nU U gc nV V tc K z
   

 
       

 
    

      (3-1)       

The electricity demand at each electricity node is defined as a linear function of the 

electricity nodal price. The intercept and slope of the inverse demand function are 

respectively ja  and jb  with jb < 0 at electricity node j. Fixed (inelastic) demands can also be 

incorporated in the lower level model [15]. 
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Figure 3- 1 The Bilevel Program with the Interacting Lower Level Optimization 

Problems  

  

For the lower level optimization problems, we consider the three major market 

participants of the electricity supply network consisting of fuel suppliers, ISO and generators, 

who all optimize under the same electricity market conditions. The fuel dispatcher minimizes 

the fuel transportation cost delivered to the electricity producers; the ISO maximizes the 

social welfare of participants in the wholesale electricity market; and the generators 

maximize their profits from selling the electricity. 

However, these three different optimization problems interact with each other as 

shown in Fig. 3-1. The dual variables π in eqn. (3-4) of the fuel dispatcher’s problem are the 

marginal cost parameters in the generators’ problems. The dual variables   in eqn. (3-16) of 

the ISO’s problem are the electricity nodal price premium parameters in the generator 

problems. The electricity quantities determined by the generators are the fuel demand 

Fuel Supplier

  Min cost

  s.t. gen demands [π]

        fuel supplies

        transp. Capacities nU

Generator i

  Max profit

  s.t. total supply y = demand

        generation capacity nV

        

Generator i

ISO

  Max total welfare

  s.t. gen quantities = load [p]

        power flow equation

        transm. capacity Z 

  Max profit

  s.t. total supply y = demand

        generation capacity nV

        

iy

iyiy

iy

iy

iy
i

i ip

ip

Upper Level Decision Maker on Expansion

nU

nV nV

Z

  Max total welfare (consumer surplus + producer surplus + transmission rent) 

         – total expansion cost (fuel transp. Expansion + generation expansion + transm. expansion)
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parameters in the fuel dispatcher’s problem and the electricity supply quantities for the ISO’s 

problem.   

Given the generation amount jy  required at each electricity node j, the fuel 

dispatcher’s optimization problem is: 

Fuel Dispatcher’s decision problem 

                            
0

min     gj gj
x

gj A

c x




                                                  (3-2) 

           . . ,      [ 0]
g

gj g g

j N

s t x W g F 


                                     (3-3) 

                            ,         [ ]
j

gj j j

g F

x y j N 


                                      (3-4) 

                    ,       [ 0]gj gj gjx nU gj A                                      (3-5) 

                            0gjx                                                            (3-6) 

 

The fuel dispatcher aims to minimize the transportation cost subject to the constraints 

of fuel supply capacity (3-3), electricity demand (3-4) and the fuel transportation arc capacity 

(3-5). 

The market operator, ISO, seeks to maximize the social welfare based on the direct 

current optimal power flow (DCOPF) model with the full-structured form [16, 17]. Given the 

generation amounts jy  at the electricity nodes, the ISO’s decision problem is: 

ISO’s decision problem 

2

, ,

1
 max    

2
j j j j

q f
j

b q a q


 
 

 
                                            (3-7) 
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 . .  + ,     [ ]j ji ij j j

i i

s t q f f y j N p                                   (3-8) 

               max ,     [ 0]j j jj N                                               (3-9) 

            min ,     [ 0]j j jj N                                              (3-10) 

 ( ) 1 0,     [ 0]ij ij i j ij ij ijf B z M ij L                              (3-11) 

 ( ) 1 0,     [ 0]ij i j ij ij ij ijB f z M ij L                              (3-12) 

               ,      [ 0]ij ij ij ijf z K ij L                                        (3-13) 

             ,       [ 0]ij ij ij ijf z K ij L                                        (3-14) 

The ISO’s decision problem, based on the full structure DCOPF model of [17], is 

equivalent to the reduced structure DCOPF model in [1].      

Condition (3-8) represents the flow balance at each electricity node. Constraints (3-9) 

and (3-10) give the bounds on each voltage angle. Equations (3-11) and (3-12) incorporate 

the physical characteristics of the transmission grid so that the (linearized) power flow 

equations will be always satisfied. The maximum capacity of each transmission line is 

enforced by equations (3-13) and (3-14).  

Instead of the standard power flow equation ( ) 0ij i j ijB f    , binary decision 

variables z and big value M are used in (3-11) and (3-12) to represent discrete investment 

decisions on new transmission lines in a manner similar to a transmission-switching model 

[16, 18]. The variable ijz  indicates the existence of the transmission line ij. If the candidate 

transmission line has been added, then ijz  equals 1, the value of ijM does not matter at all, 

and the two inequalities are equivalent to the traditional power flow equation. On the other 
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hand, if 
ijz  is 0, then the value of 

ijM  matters. The value of 
ijM  should be large enough to 

impose no additional constraint on ( )ij i j ijB f   . We fixed all the z variables 

corresponding to the lines which exist prior to the expansion decision to be 1. For the 

candidate transmission lines, their corresponding z variables can be either 1 or 0, to represent 

building those lines or not.  

Regarding the parameters M, excessively large values might cause numerical 

difficulties when solving the problem. One of the assumptions of the DCOPF model is that 

the voltage angle difference of any transmission line is quite small [17]. Here we adopt the 

assumption in [16] with upper and lower bounds on  of  0.6. Because the electricity flow f 

is also bounded by K, the quantity ( )ij i j ijB f    is bounded by 1.2 ij ijB K , which 

therefore represents a sufficiently large value of 
ijM . 

We assume that the electricity wholesale market takes the form of oligopolistic 

competition. The multiple generators are modeled as Cournot competitors in the electricity 

wholesale market. Each of them determines its electricity quantity to sell. Besides Cournot 

model, there are also many other approaches available to model the generator’s competition 

in the electricity market [19]. A more realistic approach is the supply function equilibrium 

game that allows each firm to submit a bid function with different quantity offered given 

different market price. However, it suffers from computational inefficiency and multiplicity 

of equilibrium due to its non-convexity. Another popular approach is Bertrand game in which 

the producer makes the decision on selling price instead of quantity. Therefore it is more 

likely to give a similar result as in a competitive electricity market where the prices are all set 
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to the marginal cost. This market behavior does not agree with the oligopolistic competition 

that we assumed. The Cournot model is not as realistic as the supply function equilibrium 

model. However, it is much easier to solve and in a long run the market behavior is close to 

Cournot result [19, 20]. Since the total amount of electricity generated affects the electricity 

market prices, here we assume that each generator also determines the LMP η at the 

reference electricity node [4].  

The LMP at the reference electricity node is 

                                      
refp                                                            (3-15) 

and the price premium at each node is then defined as 

                                   
j jp                                                         (3-16) 

where the LMPs p are dual variables of the market clearing constraint (3-8). 

Given the fuel price 
i  and price premium 

i  at its node, which are derived from the 

dual variables of the fuel supplier’s decision problem and ISO’s decision problem, 

respectively, the generator’s decision problem is: 

Generator’s decision problem 

 
0,

max     
i

i i i
y

y


  


                                             (3-17) 
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                           (3-18) 

                     ,      [ 0]i i iy nV i N                                            (3-19) 

                      0iy                                                      (3-20) 
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Equation (3-18) represents i i

i i

q y  , the balance of total demand and total generation 

amount in terms of the residual demand seen by generator i. Constraint (3-19) indicates the 

maximum generation capacity. The generator’s problem can also be extended to take carbon 

emission regulations into account, as described in Appendix 3.B. 

If we explore only the lower level optimization problems by simply ignoring the 

upper level objective function, the lower level is equivalent to the problem studied by Ryan, 

et al. [1]. The only difference is the equivalent modification of the ISO’s decision problem to 

incorporate the transmission expansion decision. We verified our equivalent new model with 

fixed capacities by comparing its numerical results with those in [2]. Because the existence 

of Nash equilibrium has been proved in [1], it also holds for our lower level problems. To 

explore the potential multiplicity of equilibria, we solved both the maximization and 

minimization problems for multiple different objective functions in the numerical instance of 

Section 3.4 with investment variables fixed, and they all returned with the same equilibrium 

solution, which suggests that the equilibrium is unique in that instance. 

3.2.2 Mathematical Program with Complementarity Constraints (MPCC) 

The MPCC problem is to optimize an objective function subject to complementarity 

constraints that can be expressed with the standardized format  0 0x f x   .  

The mixed integer bilevel programming problem presented in Section 3.2.1 has 

integer decision variables only in the upper level. Thus, the lower level optimization problem 

can be reformulated in terms of complementarity constraints by applying the KKT conditions 

to each player’s optimization problem. This transforms the original bilevel program into an 
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equivalent MPCC with a mixed integer quadratic objective function. The objective function 

is given by equation (3-1) and the full set of constraints is: 

          0 0,  gj gj g j gjx c gj A                                         (3-21) 

                        ,  
j

gj j

g F

x y j N


                                                 (3-22) 

             0 0,  
g

g g gj

j N

W x g F


                                         (3-23) 

              0 0,  gj gj gjnU x gj A                                          (3-24) 

                    0,  j j j ja b q p j N                                              (3-25) 

   
, ,

+ 0,j j ji ji ji ij ij ij

i ji L i ij L

B B j N          

 

                         (3-26) 

            + + 0,  j i ij ij ij ijp p ij L                                         (3-27) 

                 +  , j ji ij j

ji L ij L

q f f y j N
 

                                         (3-28) 

                 max0 0,  j j j j N                                              (3-29) 

                min0 0,  j j j j N                                               (3-30) 

   0 1 0,  ij i j ij ij ij ijB f z M ij L                                 (3-31) 

   0 1 0,  ij i j ij ij ij ijB f z M ij L                                (3-32) 

              0 0,  ij ij ij ijz K f ij L                                         (3-33) 

               0 0,  ij ij ij jz K f ij L                                         (3-34) 

         0 0,  j j j j jy j N                                        (3-35) 
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0,  j j

i N i

y j N
b




                                           (3-36) 

               0 0,  j j jnV y j N                                         (3-37) 

               ,  ,  0,1gj gj j j ijnU U nV V z                                    (3-38) 

Constraints (3-21) – (3-24) are the KKT conditions for the fuel dispatcher’s problem 

(3-2) – (3-6), while (3-25) – (3-34) are the KKT conditions for the ISO’s decision problem 

(3-7) – (3-14), and (3-35) – (3-38) are the accumulated KKT conditions for all generation 

companies’ problems (3-17) – (3-20).     

Due to the nonconvexity of the feasible region, the MPCC problem is difficult to 

solve. In the next section, we outline three reformulations and describe how they help to 

identify and evaluate the global optimal solution. 

3.3 Reformulation and Solution 

3.3.1 Nonlinear Programming Reformulation (MPCC-NLP) 

To solve the MPCC, its complementarity constraints must be reformulated. One 

method is to transform the complementarity constraints into nonlinear functions. Consider a 

generic complementarity constraint as: 

                               0 0r s                                                           (39)  

The product reformulation replaces it with constraints that r and s are nonnegative 

and 0r s   [21]. The complementarity constraint can also be expressed in terms of a 

nonlinear complementarity problem (NCP) function  ,r s  that satisfies  , 0r s   if and 

only if 0r s   and , 0r s  . An example of  ,r s is the Fischer-Burmeister function
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2 2r s r s    [22, 23]. Both of these methods maintain the reformulated complementarity 

conditions as constraints.  A third method is to penalize positive values of the reformulated 

nonlinear function r s  in the objective function.  

These three methods are available as options in the NLPEC solver in the General 

Algebraic Modeling System (GAMS) [24]. For the numerical instance in Section 3.4, no 

optimal solutions were found with either the Fischer-Burmeister function or the penalty 

reformulations. Local optimality was achieved by the product reformulation, which 

converted the MPCC to a mixed integer nonlinear programming problem. However, global 

optimality of the solution is not guaranteed. We can conclude only that the solution is 

feasible but not necessarily globally optimal for the MIBLP problem. Its objective value is 

therefore a lower bound on the optimal value.  

To identify the global optimum of the MIBLP problem, we further explored two 

additional methods to solve the problem described in sections 3.3.2 and 3.3.3 respectively.  

3.3.2 Single-Level Mixed Integer Quadratic Program (1-level MIQP) 

The MIBLP model assumes that a central decision maker anticipates the lower level 

decision makers’ reactions to his investment decision on the capacity expansion of all the 

facilities involved and makes the optimal decision to maximize the total benefit. All of the 

lower level decision makers will respectively make their optimal operational decisions, given 

the leader’s decision. 

In the 1-level MIQP relaxation, we assume that there is only one centralized decision 

maker in the market making all investment and operational decisions to optimize the benefit 

of the whole system, while satisfying all the physical constraints from each part of the 
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integrated network. In this case, the generator companies are no longer able to make their 

own strategic decision to maximize their profit but simply accept the market optimal 

decisions. 

This relaxed problem can be derived by removing all of the objective functions of the 

lower level optimization problems. The objective function of relaxed MIQP problem is 

equation (3-1), and the constraints are equations (3-3) – (3-6), (3-8) – (3-14) and (3-18) – (3-

20). Because the ISO and fuel dispatch objectives are already included in (3-1), only the 

generator strategic capacity is removed. Since the problem is a relaxation of the original 

problem, its optimal solution provides an upper bound for the MIBLP problem, and therefore 

can be used to bound the optimality gap once a feasible solution is provided. 

The difference of the optimal objective values derived from the MPCC-NLP and the 

1-level MIQP gives a range in which the global optimal objective value must lie. If the gap 

between them is small enough, the global solution can be well approximated by the solution 

of MPCC-NLP problem. 

3.3.3 Binary Variables Reformulated Mathematical Program with 

Complementarity Constraints (MPCC-BIN) 

To solve the problem more efficiently and, more importantly, to obtain the global 

optimal solution, we converted MPCC problem into an equivalent mixed integer quadratic 

program by introducing a set of binary variables   and the large parameters M [14]. For 

instance, the reformulation of equation (3-39) is:  

                                   0 r M                                                         (3-40) 

                                 0 1s M                                                      (3-41) 
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The complementarity constraints have been converted into the mixed integer linear 

constraints, and the whole problem becomes an MIQP problem. The big value M and the 

binary variable  ensure that either r or s must be zero.  

These inequalities ensure that either r or s must be zero. The complementarity 

constraints have been converted into the mixed integer linear constraints, and the whole 

problem becomes an MIQP problem.  

The constraints (3-22), (3-25) – (3-28), (3-36) and (3-38) of MPCC problem remain 

the same and the constraints (3-21), (3-23) – (3-24), (3-29) – (3-35) and (3-37) are 

reformulated by the binary variables. A large number of binary variables are introduced in 

the MPCC-BIN reformulation. 

3.4 Numerical Results 

We studied a six node transmission network with four fuel suppliers illustrated in Fig. 

3-2 [2].  

 

Figure 3- 2  Integrated Electricity Supply Network including the Fuel Suppliers, 

Transmission Grid and Generators 
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Table 3- 4  Investment Costs of Fuel Delivery, Generation and Transmission Capacity 

Investment Cost Coal Natural Gas 

fc  ($/MWh) 1.5 4 

gc ($/MWh) 10 6 

tc ($/MWh) 4 

 

Table 3- 5  Fuel Capacity and Transportation Cost 

Fuel Suppliers 

Electricity Nodes 

1 2 3 4 5 

,g jU

(MWh 

equivalent) 

C1 200 30 30 0 0 

C2 800 500 500 0 0 

C1 0 0 0 30 60 

C2 0 0 0 200 800 

gjc  

($/MWh) 

C1 65 73 70 - - 

C2 80 75 72 - - 

G1 - - - 120 115 

G2 - - - 125 122 

 

The generators P1, P2 and P3 are coal-fired plants, supplied by coal suppliers C1 and 

C2, and the generators P4 and P5 are natural gas-fired plants supplied by two natural gas 

suppliers as in G1 and G2. The LSEs 4, 5 and 6 represent the electricity loads. The solid lines 

are the existing transmission lines and the dashed lines are the candidate transmission lines 
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for possible expansion. 

Table 3- 6  Generation Capacity and Parameters for Inverse Demand Function 

Electricity Nodes jV (MW) 
jb ($/MWh/MWh) ja  ($/MWh) 

1 600 -Inf 0 

2 400 -Inf 0 

3 400 -Inf 0 

4 1000 -0.08 250 

5 600 -0.08 300 

6 N/A -0.08 350 

 

The numerical results are based on a single hour. All of the expansion costs are also 

estimated on an hourly basis. The generation and transmission capital costs are derived from 

Joint Coordinated System Planning report [25]. All of the other parameters in Table 3-6 and 

3-7 are based on [2]. Tables 3-4, 3-5, 3-6 and 3-7 give the parameters of the case study.  

Table 3- 7  Transmission Capacity, Susceptance of the Network and Initial Status of the 

Transmission Lines 

Transmission Line Transmission Capacity ,i jK (MW) Susceptance ijB  1  
0

ijz  

(1, 3) 400 156.25 1 

(1, 4) 240 33.67 1 

(2, 3) 1000 Inf 1 

(3, 4) 150 32.89 1 

(3, 6) 250 35.59 1 
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   Table 3- 7  (continued) 

(4, 5) 240 33.67 1 

(5, 6) 350 92.59 1 

(2, 6) 400 32.89 Can 

(2, 5) 400 35.59 Can 

(1, 6) 400 32.89 Can 

(1, 2) 400 156.25 Can 

(2, 4) 400 32.89 Can 

(4, 6) 400 33.67 Can 

 

Table 3- 8  Numerical Results of Original Equilibirum MPCC-NLP, 1-level MIQP and 

MPCC-BIN problems 

Decision Variables 

Problems 

Original 

Equilibrium 

MPCC-NLP 1-Level MIQP MPCC-BIN 

Objective Value 286191 559895 575362 564275 

Social Welfare 286191 598973 618312 600173 

Consumer Surplus 77798 242068 333332 243554 

Generator Surplus 119318 160840 52715 148060 

Transmission Rent 89075 196065 232265 208559 

Fuel Expan. Cost 0 12174 14598 12173 

Gen. Expan. Cost 0 17305 20353 15725 
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Table 3- 8  (continued) 

Trans. Expan. Cost 0 9600 8000 8000 

Fuel Expansion 

(C1,1) 0 1018 755 755 

(C1,2) 0 18 67 125 

(C1,3) 0 131 360 312 

(G1,4) 0 722 860 713 

(G1,5) 0 1883 2346 1883 

Gen. Expansion 

1 0 628 365 365 

4 0 0 0 0 

5 0 1353 1816 1353 

Trans. Expansion 

(2,6) 0 1 1 1 

(2,5) 0 1 1 1 

(1,6) 0 1 1 1 

(1,2) 0 1 0 0 

(2,4) 0 1 1 1 

(4,6) 0 1 1 1 

Fuel Delivered 

(C1,1) 200 1218 955 955 

(C1,2) 30 48 97 155 

(C1,3) 30 161 390 342 

(C2,1) 157 0 0 0 

(C2,2) 30 0 0 0 
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Table 3- 8  (continued) 

 

(C2,3) 142 0 10 0 

 

(G1,4) 130 852 990 843 

 

(G1,5) 60 1943 2406 1943 

 

(G2,4) 790 0 10 0 

 

(G2,5) 540 0 10 0 

Amount generated 

by Generator 

1 357 1218 955 955 

2 60 48 97 155 

3 172 161 400 342 

4 920 852 1000 843 

5 600 1943 2416 1943 

 

Generation 

Consumed 

4 1256 1341 1501 1344 

5 386 1665 2138 1665 

6 468 1218 1229 1229 

Electricity Price 

1 90 97 73 90 

2 77 76 75 79 

3 77 76 75 79 

4 150 143 130 142 

5 269 167 129 167 

6 313 253 252 252 
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Table 3- 8  (continued) 

Electricity Flow 

(1,2) 0 344 0 0 

(1,3) 168 344 400 400 

(1,4) 190 228 240 240 

(1,6) 0 303 315 315 

(2,3) 60 -105 -400 -342 

(2,4) 0 150 150 150 

(2,5) 0 115 115 115 

(2,6) 0 231 231 231 

(3,4) 150 150 150 150 

(3,6) 250 250 250 250 

(4,5) 4 -44 -44 -44 

(4,6) 0 83 83 83 

(5,6) 218 350 350 350 

 

We implemented all the problem formulations: MPCC-NLP, 1-level MIQP, and 

MPCC-BIN, via the modeling language of GAMS and called its inner solvers to solve the 

problems. The original equilibrium represents the solution to the lower level problem only 

and is found by the PATH solver [26]. The MPCC-NLP is solved by the DICOPT solver [27] 

which cannot guarantee global optimality. The 1-level MIQP and MPCC-BIN problems are 

both solved by the CPLEX solver [29] to global optimality. The numerical results are 

indicated in Table 3-8. The “Original Equilibrium” solution in Table 3-8 gives the MPCC-
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NLP results without any expansion. The MPCC-BIN is solved with each value of M equal to 

10000. The methodology to derive appropriate values for M is described in Appendix 3.C. 

The BARON NLP solver could find a global optimum for MPCC-NLP if all 

mathematical expressions have finite lower and upper bounds [28]. We did not pursue this 

avenue because finding upper bounds is equivalent to identifying large enough values of M 

for the binary reformulation and finding lower bounds requires additional effort. 

Let the optimal objective values found by solving MPCC-NLP, 1-level MIQP and 

MPCC-BIN be 
1 , 

2 and 
3  and the global optimum of the MIBLP problem be opt . The 

ptimality gap of the MPCC solution is 1 opt  . Since the 1-level MIQP problem is a 

relaxation, 
2  is an upper bound of opt . Therefore, the optimality gap is bounded by 

1 2  , which indicates how far the obtained optimal solution might be from the global 

optimal solution. The optimality gap by percentage can also be defined as 

1 / 100%opt opt    , bounded from above by 
1 2 2/ 100%    . In our numerical study, 

the optimality gap 
1 2  is 15467 and the bound on the percentage optimality gap is 2.76%, 

which implies that the feasible solution solved by MPCC-NLP is within 2.76% of the global 

optimum.  

The MPCC-BIN reformulation is also equivalent to the MIBLP problem. Moreover, it 

is also a maximization problem with a concave quadratic objective function. Therefore, the 

global optimal solution is guaranteed. The CPLEX solver verifies convexity by checking that 

the Hessian matrix of both objective function and the constraints is positive semi-definite. 

This allows inclusion of a lower bound, but not an upper bound, constraint on the objective 
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function value. We compared the computational time of the problem with and without the 

lower bound obtained from MPCC-NLP. The computation time in seconds for solving the 

original equilibrium, MPCC-NLP, and 1-level MIQP are, respectively, 0.484 and 0.125. It 

takes 0.953 s to solve MPCC-BIN without any bound, and 0.64 s with the lower bound 

provided by MPCC-NLP. That is, the bound improves the computational efficiency by nearly 

33%. 

The optimal solutions suggest that the decision maker should build the candidate 

transmission lines (2, 6), (2, 5), (1, 6), (2, 4) and (4, 6) to achieve the global optimum. It is 

obvious in Table 3-4 that the coal-fired generators are much cheaper than the natural gas-

fired generators. Thus the electricity is more likely to flow from the left to right in Figure 3-

2, especially given that all of the loads are located on nodes 4, 5 and 6. Before making the 

expansion decision, transmission congestion exists on lines (3, 4) and (3, 6). Without the 

accessibility of the cheaper electricity, the LMPs on LSE nodes 4, 5 and 6 are much higher, 

which also suggests that more transmission lines are required to help deliver the electricity 

from left to right. The expansion made on the candidate transmission lines increases the 

transmission capacity to deliver more electricity from the coal-fired generators to the loads, 

and thus will certainly help to balance the electricity prices of the network. 

As for the coal generators, the cheapest fuel source is C1. Therefore the decisions 

have been made to expand the arcs (C1, 1), (C1, 2) and (C1, 3). Similar decisions have been 

made to expand the natural gas transportation from the relatively cheaper source G1. Even 

though the natural gas costs are about twice as high as the coal costs, it makes the gas 

transport expansion decision due to the transmission capacity limits. The congestion makes it 
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impossible to use all of the electricity available from the coal-fired plants. 

The decision on the generation expansion matches the expansion on the fuel 

transportation and the transmission grid. 

The expansions help generate and deliver more cheap electricity to satisfy the demand 

and thus improve the balance in the electricity prices on the nodes. It also leads to an increase 

of sellers’ and buyers’ surplus. Although the price differences among the nodes has been 

decreased, the transmission congestion still exists and the increasing number of transmission 

lines results in even more transmission rents in total. All of the effects achieve an increase in 

overall welfare of the integrated electricity supply system. 

Also from Table 3-8, by comparing the results of both MIQP and MPCC-BIN 

problems, we are able to see how the strategic decisions made by generation companies 

affect the performance of the electricity market, due to the fact that MIQP problem is a 

relaxation of the MIBLP problem obtained by only eliminating the strategic behavior of the 

generators. Without generator strategic operational behavior, more fuel supply and generation 

facilities are expanded so that the electricity prices are lower, which results in a large increase 

in buyer surplus and decrease in generator surplus. 

3.5 Conclusions 

In this paper, we investigated a capacity expansion bilevel programming problem. In 

the lower level, we take into account an integrated electricity supply system including the 

fuel transportation, generation and transmission, as well as the interactions among them in a 

restructured electricity market, where the consumer demand is modeled as a linear function 
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of the electricity price. Capacity expansion decisions are made by an upper level decision 

maker from a global point of view. 

In the absence of strategic operational decisions by generators, the total social welfare 

increases. Electricity buyers are better off while the generators are worse off. Fuel and 

generation facilities are expanded more, which leads to lower electricity prices. In our 

numerical study, generator strategic operational decisions reduce the welfare less investment 

cost by 2%.  

We used two reformulations of the MPCC to efficiently identify a global optimum. 

The NLP reformulation takes less time to solve the problem but its solution is not guaranteed 

to be globally optimal. It provides a feasible solution and lower bound on the optimal value. 

On the other hand, the binary formulation takes more time to solve the problem, but it is able 

to identify the global optimal solution. Including the lower bound derived from MPCC-NLP 

significantly improves its computation time. However, it takes effort to find an appropriate M 

value as a tight bound for the mathematical expressions in the complementarity constraints to 

implement the MPCC-BIN reformulation. Small values of M could eliminate the optimal 

solution but excessively large ones increase the computation time. The relaxed 1-level MIQP 

provides upper bounds on the optimal value and optimality gap. It can be solved easily, but 

will not necessarily provide a feasible solution for the original problem. 

A six bus case study is provided to illustrate the three methodologies and give the 

combined expansion results in fuel transportation, generation and transmission. We also 

analyze the effect of the global optimal expansion decision on the integrated electricity 

supply system.  
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For future research, the investment costs for the fuel transportation, generation and 

transmission subsystems can be further extended to nonlinear cost functions that incorporate 

economies of scale. A dynamic decision making process can also be represented to optimize 

investment decisions in multiple periods over a long term horizon. The major uncertainties 

including natural gas cost and electricity demand can also be taken into account in the model. 

To do so, we can first generate different future scenarios for the uncertainties and then 

incorporate them into the model as a stochastic MPCC problem. Furthermore, we can also 

compare the results of the model in our paper with the ones from a more realistic point of 

view in which every asset owner makes his own capacity expansion decisions. This 

comparison will show how much the optimal decisions identified from a global point of view 

could benefit the integrated electricity supply system and provide possible targets for policy 

design. 

Appendix 3.A  Elaboration of Fuel Dispatcher’s Decision Problem 

Two fuel resources, coal and natural gas, which normally have different units $/ton 

and $/thousand cubic feet, are considered in Section IV. To make the units of different fuel 

types match and most importantly compatible with the unit of energy MWh, we converted 

the units of fuel into MWh equivalents and set their cost parameters c, capacity limit 

parameters W and nU, and investment costs fc accordingly. It is also possible to directly 

model the fuel dispatcher problem with original units of fuel resources by incorporating the 

heat rate H and efficiency ε conversion into the model. The fuel cost c can also further be 
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decomposed into two parts: fuel cost cl and the delivery cost del. In this case, the objective 

function Eq. (3-1) is changed to: 
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And the fuel dispatcher’s decision problem is revised as:
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Since the units of x are $/ton and $/thousand cubic feet respectively, we have parameter e 

(BTU/ton or BTU/thousand cubic feet) to convert both of them into $/BTU.  

The revision affects the units of π, which also represent the marginal costs in the 

objective function of generator’s problem.  It can be expressed as: 
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Appendix 3.B  Incorporation of Carbon Emission Regulations 

One of the ways to consider carbon emission concerns is simply to adopt a carbon 
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emission cost pco2 with the unit $/ton. The objective function of the generator’s problem is 

restated as: 

  2
0,

max     
i

i i i co i i
y

y p E y


  


  
 

The parameter E is the tons of carbon emission emitted per MWh of energy depending on 

different generation technologies. 

Another way to incorporate the carbon emission is in a cap-and-trade system. Each of 

the generation companies is given a certain number of carbon emission allowances N. 

Generation companies are allowed to trade the allowances as long as the total carbon 

emissions of the system are within the limit [30]. The objective function of the generator’s 

problem is then changed to:  

   2
0,

max     
i

i i i co i i i
y

y p E y N


  


   
 

If the carbon emission Eiyi exceeds its allowance, the generation company must buy 

allowances from others for the extra emissions. Otherwise, the generation company can make 

a profit by selling its unused allowances. In addition, a market clearing equilibrium 

constraints must be added to the upper level optimization problem [30]: 

20 0co i i i

i i

p E y N
 

    
 
                                                  (2-42) 

If the total carbon emission is less than the total amount of the allowance, the carbon 

allowance trade is free. Otherwise, there is price pco2>0 for buying each ton of the carbon 

allowance. 
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Appendix 3.C  Setting the Values for M in the Binary Reformulation 

One way to set the M value is to roughly estimate the biggest possible values for all 

the r and s in the equilibrium constraints, which is also equivalent to estimate the upper 

bounds of the dual and primal variables.  

For the fuel dispatcher’s decision problem, Eq (2-21), (2-23) and (2-24) are the 

relevant equilibrium constraints. The primal variables x is bounded by nU, the new fuel 

transportation capacity after expansion. The expansion will not be infinite due to the limited 

electricity demand. The dual variables ω, π and ρ represent how much the objective function 
 

changes if the right-hand side (RHS) changes by 1 unit. For Eq. (2-3) and (2-5), the largest 

possible change in objective function happens when an extra unit of cheapest fuel resource 

becomes available and substitutes one unit of the most expensive fuel resource, which is 

estimated as 60gj gjc c   in this specific instance. Likewise, we can also obtain the upper 

bound gjc =125 for π which represents the marginal fuel cost. 

For the generator’s decision problem, we estimated the bound of the variables in the 

same manner so that y is bounded by nV, and µg and βj are both bounded by j ja  =285.  

For ISO’s decision problem with equilibrium constraints (2-29) – (2-34), f, θ and q 

are bounded by K, θmax and nV, respectively. The upper bound for p is a, the intercepts of the 

inverse demand functions. The dual variables of the voltage angle constraints, α
+
 and α

-
, will 

not affect the objective function because the voltages are always within the bounds. The dual 

variables λ
+
 and λ

- 
indicate how much the welfare changes if the capacity limit changes by 

one unit. Since it is quite difficult to estimate the impact of a one unit flow change on q, we 



www.manaraa.com

104 

 

 

can roughly evaluate the largest possible change in q and the welfare accordingly. Likewise, 

we obtain the bounds for γ
+
 and γ

-
. 

According to the rough estimating result of the bounds, letting each value of M be 

10,000 will be large enough. 

Another way to give the M an appropriate guess is to take advantage of the MPCC-

NLP solution. It provides a general idea of neighborhoods for the optimal values of the 

variables, which can be used to estimate a tighter and more realistic M. Based on our MPCC-

NLP solution, we estimate that 5000 should be large enough for M. 

In our case study of MPCC-BIN, we tried out different values for M, ranging from 

2000 to 100000. The results indicate that all of these values are valid for M because they all 

result in the same optimal solution. Better computational performance could be achieved by 

setting different M values for each of the mathematical expressions in the complementarity 

constraints.      
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CHAPTER 4 A TRI-LEVEL MODEL WITH AN EPEC SUB-PROBLEM 

FOR CENTRALIZED TRANSMISSION AND DECENTRALIZED 

GENERATION EXPANSION PLANNING FOR AN ELECTRICITY 

MARKET: PART I   

Submitted to IEEE Transactions on Power Systems 

Shan Jin and Sarah M. Ryan 

Abstract 

We develop a tri-level model of transmission and generation expansion planning in a 

deregulated power market environment. Due to long planning/construction lead times and 

concerns for network reliability, transmission expansion is considered in the top level as a 

centralized decision. In the second level, multiple decentralized GENCOs make their own 

capacity expansion decisions while anticipating a wholesale electricity market equilibrium in 

the third level. The collection of bi-level games in the lower two levels forms an equilibrium 

problem with equilibrium constraints (EPEC) that can be approached by either the 

diagonalization method (DM) or a complementarity problem (CP) reformulation. We 

propose a hybrid iterative solution algorithm that combines a CP reformulation of the tri-

level problem and DM solutions of the EPEC sub-problem.  

4.1 Introduction 

The traditional capacity expansion planning problem takes a centralized perspective 

compatible with the industry’s previous vertically integrated structure of generation, 
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transmission and distribution. In the 1990s, the power systems in United States experienced a 

transition from regulation to deregulation that is expected to lead to an efficient market and 

lower electricity prices. It has been a long and difficult transition process. Increasingly across 

the U.S., the electricity market is composed by separate generation companies (GENCOs), 

transmission owners (TRANSCOs), distribution companies (DISCOs) and load serving 

entities (LSEs) [1].The Independent System Operator (ISO) has been developed to monitor 

the grid, ensure reliability and settle the electricity market for a region. The restructuring 

process introduced a market environment to which the traditional centralized planning 

methodologies no longer apply. New models are needed to study market interactions created 

by different competitors, the strategic decisions of market players and their decisions’ impact 

on wholesale electricity trade. The ISOs and regional reliability councils, who conduct 

transmission planning studies and reliability assessment, will be interested in how GENCOs’ 

strategic expansion decisions react to the transmission planning decisions, and the 

performance of the electricity market in response to both the transmission and generation 

expansions. 

To provide a reliable electricity supply network, we must not only consider 

generation expansion to make sure that we have sufficient energy to meet future loads, but 

also take into account the entire integrated wholesale electricity supply system including 

transmission and market clearing by the ISO. All these decisions have great impact on 

market behavior. Transmission congestion due to insufficient transmission capacity can 

cause spikes in the locational marginal prices (LMPs) or even load curtailment in extreme 

cases. The ISO is important to maintain reliable and efficient grid operations. LSEs, who are 



www.manaraa.com

111 

 

 

the buyers in the wholesale market, play important roles in distributing the electricity to retail 

customers. In restructured markets, expansion decisions may be justified by potential profit 

increases rather than cost reductions. The profit return received by an investor is determined 

by an electricity market price settlement. The system operator (ISO) matches the electricity 

supply bids and demand offers and settles the LMPs to maximize total market surplus of both 

buyers and sellers. Typically this is done on an hourly basis in a day ahead market and every 

5 minutes in the real-time market. Moreover, while investing in more generation capacity, the 

transmission adequacy should be guaranteed so that the newly installed power can be 

transported to where the demand is located. Due to deregulation of electricity market, each 

GENCO can take its strategic expansion and bidding decisions to the market.  

We propose a method to solve a market-based generation and transmission expansion 

problem. In our model, each GENCO anticipates prices settled by an ISO market clearing 

problem when making its own investment and operational decisions. At the same time, the 

GENCOs’ decisions are also made in response to transmission planning decisions because 

sufficient transmission capacity is essential for GENCOs to reap additional profits from 

delivering energy from expanded capacity to the load locations. GENCOs will hesitate to 

expand if a high level of grid congestion is likely to result in future generation curtailment. 

On the other hand, too much transmission capacity does not favor expansion either, due to 

the low electricity prices which provide no incentive for investment. Therefore, the 

transmission expansion planning decision must be considered in a market based generation 

expansion planning problem. Although in a deregulated market, transmission lines are owned 

by individual TRANSCOs, the overall transmission expansion planning decision remains 
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centralized to guarantee reliability of the transmission grid. Therefore, our model includes a 

centralized transmission planning decision by the ISO, who is mainly in charge of the 

reliability of the regional market. The ISO conducts a resource adequacy study, anticipates 

the expansion and dispatch decisions by multiple GENCOs, and decides where to expand the 

grid. Thus, our market-based model reflects all of these market integrations among GENCOs 

and the ISO. It captures both dependence of the GENCOs’ expansion decisions on the ISO’s 

centralized transmission planning decision and their anticipations of wholesale electricity 

market settlement after expansion. 

We formulate the generation and transmission expansion planning problem as a 

mixed integer tri-level program, where the discrete centralized transmission planning 

decisions occur in the first level, multi-GENCOs’ generation expansion decisions constitute 

the second level, and an electricity market equilibrium problem forms the third level. 

Modeling transmission planning in the top level is consistent with a principle that 

transmission planning should proactively influence generation investment [2]. The lower 

level interactions are based on our previous model [3], including strategic behavior by the 

GENCOs. Because the tri-level structure with a sub-problem of bi-level games poses solution 

difficulties, algorithms will first be proposed to solve the collection of bi-level games. This 

collection can be reformulated as an equilibrium program with equilibrium constraints 

(EPEC), to which two currently available methodologies discussed in [4] can be applied. We 

propose a hybrid iterative algorithm to solve the entire tri-level programming problem by 

exploiting the advantages of both EPEC solution methods. In part II of this paper in Chapter 

5, case studies of 6, 30, and 118 bus test systems are presented to illustrate how the algorithm 
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works to optimize the transmission expansion plan in anticipation of generation expansion 

decisions and market equilibria.  

The contributions of this paper are fourfold: 1) We propose a novel formulation of 

centralized transmission and decentralized generation expansion planning as an integrated tri-

level optimization problem with a sub-problem of bi-level games. 2)  The solution challenges 

posed by the problem’s multi-level and bi-level games structure are addressed by first 

reformulating the non-convex sub-problem as an EPEC and solving it by the diagonalization 

method (DM) as multiple mathematical programs with equilibrium constraints (MPECs). 

Since the concavity of each maximization MPEC is not guaranteed, we also propose a way to 

verify the solution as a local (approximate) Nash equilibrium (NE) point. 3) We apply a 

complementarity problem (CP) reformulation to the entire tri-level programming problem to 

search for promising transmission expansion plans. 4) We develop a novel hybrid iterative 

algorithm that can successfully solve the entire tri-level expansion planning model. 

In Section 4.2, a thorough literature review is given. The model is presented in 

Section 4.3. Sections 4.4 and 4.5, respectively, illustrate the algorithms to solve an NE game 

of bi-level games, and a tri-level programming problem with a bi-level games sub-problem. 

Section 4.6 concludes the paper. 

4.1 Literature Review 

In a restructured market, generation expansion decisions are no longer taken from a 

centralized perspective. Instead, each individual GENCO makes its own decision. Because 

the decision made by a strategic player is always subject to a market settlement result, many 
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studies of restructured electricity markets formulate an ISO market clearing problem as a 

lower level problem of the decision maker. Generation or transmission expansion decisions 

by an individual participant are modeled in the upper level with the lower level representing 

the market outcomes [5][6]. A two-tier, multi-period, multi-GENCO equilibrium capacity 

expansion model was proposed in [7]. A capacity expansion problem of strategic multi-

GENCO bi-level games was presented and a co-evolutionary algorithm was applied to search 

for the NE solution in [8]. A GENCO’s expansion decision with uncertainties of other 

GENCOs’ bidding prices in electricity market was studied [9]. There are also formulations 

considering the bidding strategies of the generation companies in the upper level [10][11]. A 

multi-GENCO bi-level problem has been studied subject to a market clearing problem in the 

lower level and was solved as an EPEC [12]. A review of traditional and market based 

transmission expansion planning methodologies was summarized in [13].  

In the EPEC sub-problem of our tri-level model, each strategic GENCO optimizes its 

capacity expansion planning decision in the upper level in anticipation of an electricity 

market equilibrium problem in the lower level, which results in a bi-level program (BLP). 

BLP models are widely applied in recent papers for a deregulated electricity market to model 

individual GENCOs’ capacity expansion decisions and/or bidding strategies while 

anticipating the market settlement results. Algorithms are also proposed to solve the BLP. 

Colson et al. [14] reviewed methodologies and applications of bi-level programs and 

described their connections with mathematical programs with equilibrium constraints 

(MPECs). DeNegre et al. [15] further proposed a branch and cut method to improve the 

branch and bound algorithm in [16]. Ruiz et al. [17] and Kazempour et al. [18] exploited 
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duality theory to equivalently reformulate a bi-level program that combines GENCOs’ 

decisions and electricity market clearing into a mixed integer linear program that can be 

solved to optimality. Gabriel [19] proposed a technique to linearize a bilinear element in the 

objective function of a bi-level program and improve computational reliability. Wogrin et al. 

[20] investigated a stochastic bi-level multi-year generation expansion problem subject to a 

market clearing problem with conjectured-price-response in the lower level and solved it as a 

stochastic MPEC. Kazempour et al. [21] also investigated a stochastic bi-level generation 

investment problem and solved it by Benders decomposition.  

The technique of solving a bi-level program by replacing the lower level problems 

with their equivalent Karush-Kuhn-Tucker (KKT) optimality conditions can be applied to 

our model. Upon applying the KKT conditions to all the problems at the lower level for 

every market participant, the bi-level problem becomes a mathematical program with 

complementarity constraints (MPCC). MPCC is a special case of MPEC, which has attracted 

great attention for the past decade as more and more engineering and economic applications 

involve equilibrium modeling. Ferris and Pang [22] gave a comprehensive summary of the 

engineering and economic applications of MPCC and the available solution algorithms. Its 

solution requires an equivalent reformulation of complementarity constraints and global 

convergence of the solution can be guaranteed only under certain conditions. Hu et al. [23] 

presented a methodology to find the global optimal solution of a linear program with linear 

complementarity constraints by reformulating the constraints with binary variables.  

In a restructured competitive power market in which multiple strategic players make 

their decisions simultaneously, game theory is widely applied to model and investigate the 
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competitive market behaviors. A single level Cournot game of multiple GENCOs making 

both capacity expansion and operational decision was studied, and an equilibrium solution 

was iteratively solved by a DM algorithm [24]. Three models of solving a single level 

Cournot capacity game under different economic schemes were presented in [25]. Given the 

parameter assumptions on demand and two types of candidate units, the existence and 

uniqueness of the Cournot equilibrium solutions were also discussed and proved.  

Table 4- 1 Comparison with Different Models Proposed in Previous Relevant Literature 

Review 

 [26] [27] [28] [29][30] [31] Our Model 

Transm. 
Expan. 

Cent.; 
Exist./new 

line expan.; 

Max. net 
surplus 

Decent.; 
New line 

expan.; 

Max. net 
profit 

Cent.; 

Exist./new 

line 
expan.; 

Multi-

criteria 

Cent.; 

Exist. line 
augment.; 

Min. oper. 

and 
invest. 

cost 

Cent; 
Exist./new 

line expan.; 

Min. oper. and 
invest. cost 

Cent; New 

line expan.; 
Max. net 

surplus 

Gen. 

Expan. 

Decent.; 

Continuous 

Decent.; 

Binary 

Decent.; 

Cont.  

Decent; 

Binary 

Decent.; 

Continuous 

Decent.; 

Continuous 

Multi-

Period 

Expan. 

No Yes Yes No No No 

ISO’s 
Market 

Problem 

Max. surplus 

Min. 
system 

cost, min. 

loss of 
energy 

prob. 

Max. 

surplus 

Min. oper. 

cost 
Min oper. cost Max. surplus 

GENCO’s 

Operational 

Problem 

Strategic 
(Cournot) 

Competitve 

Strategic 

(pair of 
price and 

quantity) 

Strategic 

(pair of 
price and 

quantity) 

Competitive 
Strategic 
(Cournot) 

Operational 

Uncertainty 
Yes Yes No No Yes No 

Solution 
Method 

Optimization 

of Bi-level 

Games 

Simulation 

of an 
Iterative 

Procedure 

Search-
based and 

Agent-

based 

Method 

Genetic 
Algorithm 

Linearization 

and MILP 

Reformulation 

Iterative 

algorithm 

with 
Optimization 

of Bi-level 

Games 
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When more dependencies among planning decisions and interactions among market 

players are taken into account, the planning model takes on a more complicated structure 

involving multi-level or bi-level games. Sauma and Oren [26] studied a multi-GENCO 

equilibrium expansion planning model with anticipation of an ISO market clearing problem, 

and evaluated the transmission expansion’s effect on the social welfare of the system by 

considering different transmission expansion plans. For various candidate transmission 

expansion decisions, the bi-level games were solved by an iterative DM algorithm. Hu and 

Ralph [4] investigated a sufficient condition for existence of pure-strategy Nash equilibrium 

of bi-level games, discussed the concepts of local Nash and Nash stationary equilibrium, and 

proposed a DM of iteratively solving each single bi-level optimization problem and a CP 

reformulation to solve the bi-level games. Roh et al. [27] developed an iterative process to 

solve a generation and transmission planning problem by simulating the interactions among 

GENCOs, TRANSCOs and ISO with consideration of uncertainty, profit from the market 

clearing decision, and transmission reliability. Motamedi et al. [28] proposed a transmission 

expansion framework to take into account the expansion reaction from decentralized 

GENCOs and also integrated an operational optimization in restructured electricity market. 

The problem was formulated as a four level model and it was approached by agent-based 

system and search-based techniques. Hesamzadeh et al. [29][30] studied a new framework of 

transmission augmentation planning problem with strategic generation expansion and 

operational decision and solved a tri-level program by a genetic algorithm. Pozo et al. [31] 

studied a three-level generation and transmission model, and converted it into single level 

mixed integer linear programming problem. Table 4-1 compares the tri-level model that we 
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propose with the multi-level generation and transmission expansion models investigated in 

the previous papers. Our formulation is similar to the one in [26] but we include the 

transmission plan as a decision variable in the optimization problem rather than a parameter. 

Our tri-level model has a similar structure to that investigated in [31]. However, we consider 

price-responsive demand functions and strategic interactions among the generators at the 

operational level. The objective of the system operator, to maximize the total net surplus, 

cannot be reduced to minimizing cost. The problem structure is also similar to [29][30] but 

we consider expansion as new transmission lines rather than augmentation of the existing 

circuits, price-responsive demand functions, Cournot competition among GENCOs in the 

operational level, and surplus maximization as the objective function for the system operator.  

4.2 Model and Formulation 

4.2.1 Model Assumption 

1) For simplicity, we formulate a static model with a single hour of operation and no 

uncertainty. Thus, the third (operational) level represents a typical hour in a single 

future scenario for market conditions. The model can be extended to incorporate 

multiple periods and probabilistic scenarios at the expense of increased computational 

time. 

2) For the transmission expansion, we only consider building new lines and do not 

consider expanding the capacity of the existing lines. However, the model can be 

easily extended to include line expansion without changing the structure of the 

problem. 
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3) The transmission and generation expansion costs in the top two levels are both 

modeled as linear and are discounted to form equivalent hourly costs. 

4) A price-responsive linear demand function is modeled for each LSE. 

5) Each generator at each bus is owned by a single GENCO. As a Cournot competitor, 

each GENCO makes his own decision on the generation quantity to sell in the 

electricity market under a type of bounded rationality [32]. A quadratic generation 

cost function that will not be affected by the capacity expansion is assumed.  

6) We assume the market equilibrium in the third level is simultaneously determined by 

Cournot competition among the GENCOs and an ISO market clearing problem. Its 

equivalent linear complementarity problem (LCP) reformulation generates a unique 

NE solution due to the concave objective functions and convex feasible regions [26]. 

Although the Cournot model simplifies the actual market structure, its broad market 

outcomes have been validated against an agent-based simulation of bid and offer 

matching [33]. In contrast, the multiplicity of solutions [10][12] to supply function 

equilibrium formulations may obscure the effects of upper-level capacity expansion 

decisions. 

4.2.2   Model Formulation 

The problem is formulated as a tri-level model with the ISO’s discrete transmission 

expansion decisions on the first level, multi-GENCOs’ separate generation expansion 

decisions on the second level, and the multiple market players’ operational decisions in the 

third level. By extending the bi-level model in [3], we decentralize the generation expansion 

decisions by separate GENCOs where, in the lower level, the GENCOs and ISO 
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simultaneously optimize their own operational benefits. The GENCO decides its generation 

level, and the ISO allocates energy to the LSEs to maximize the total system surplus. 

Different from the lower level model in [3], we do not consider a fuel supply problem to 

account for the fuel availability and fuel transportation capacity. Instead, for a simplified 

version, we include a fuel capacity constraint in each GENCO’s operational decision 

problem to represent any combination of fuel supply and transportation capacity constraints. 

Since the generation decisions are influenced by the transmission grid, it is assumed that the 

ISO makes a centralized transmission expansion decision in anticipation of the expansion 

decisions made by its followers, the GENCOS.  

Table 4- 2 Sets of Nodes and Arcs 

Set Description Indices 

N Electricity nodes i, j, k 

L Transmission lines ij 

     Set of electricity nodes where a GENCO is located i, j, k 

 

Table 4- 3 Decision Variable Vectors 

Primal Decision Variable Description 

First Level z 

Vector of binary decision variables for transmission lines, with 

elements for existing lines set fixed to 1  

Second Level      Generation capacities after expansion, MW 

Third Level 

q Demand satisfied at electricity nodes, MW 

θ Voltage angles at electricity nodes 
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Table 4- 3 (continued) 

 f Electricity flows on transmission lines, MW 

 y Generation amounts at electricity nodes, MW 

 η (Scalar) price at the reference electricity node, $/MWh 

   Nodal electricity price premia at electricity nodes, $/MWh 

 

Table 4- 4 Parameter Vectors 

Param. Description 

a Intercepts of electricity demand prices as linear functions of quantities, $/MWh 

b 

Slopes of electricity demand prices as linear functions of quantities, 

$/MWh/MWh 

c Linear coefficient of the generation cost function, $/MWh 

e Quadratic coefficient of the generation cost function, $/MWh/MWh 

      Invest. costs for generation expansion discounted on an hourly basis, $/MW 

       

Invest. costs for transmission line expansion discounted on an hourly basis, 

$/MW 

     Maximum values for voltage angles 

     Minimum values for voltage angles 

V Generation capacities at electricity nodes, MW 

U Fuel availability, MW 

K Capacities of transmission lines, MW 

B Susceptances of transmission lines,  
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Figure 4- 1 A Tri-level Integrated Generation and Transmission Expansion Planning 

Model 

The model is illustrated in Figure 4-1, and the sets, indices, primal decision variables 

and parameters are listed in Table 4-2, Table 4-3, and Table 4-4, respectively. A full 

mathematical formulation of the mixed integer tri-level nonlinear programming model is 

proposed as below, where the variables in the brackets to the right of constraints are their 

corresponding dual multipliers. 

 First Level: From a system point of view, the ISO collects the information about future 

loads and resources and makes a centralized decision,  , on transmission expansion to 

maximize system net surplus, equivalent to system total surplus less generation and 

transmission expansion cost: 
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                                  (4-1) 

 Second Level: Each GENCO k makes its own expansion decision   
   , given the other 

GENCOs’ decisions and in anticipation of market clearing results. Each GENCO k 

maximizes its net operating profit from selling the power in the electricity market less the 

expansion cost: 

     
                     

       
                            (4-2) 

s.t.          
                                                       (4-3) 

 Third Level: The ISO optimizes both the sellers’ and buyers’ surplus, and transmission 

rent, the total of which is given by    
 

 
    

                      
        

. 

Because            
        

 remains constant in this optimization problem, it is 

equivalent to maximize   
 

 
    

          . Constraint (4-5) gives the load balance on 

each electricity nodes. Equations (4-6) and (4-7) give the bounds on voltage angles. 

Equations (4-8) and (4-9) are the linearized power flow equations. The thermal 

transmission limits are enforced by constraints (4-10) and (4-11). M is a big value so that 

when z is 1,               ; otherwise, the constraints (4-8) and (4-9) are relaxed. 

Here, with a direct current optimal power flow approximation, we assume the voltage 

angle ranges are within ±0.6, so that             is big enough. 

          
 

 
    

                                                      (4-4) 

                                                                (4-5) 
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                                                 (4-6) 

       
            

                                               (4-7) 

                                     
                               (4-8) 

                                       
                              (4-9) 

                       
                                          (4-10) 

                        
                                        (4-11) 

                                                          (4-12) 

Simultaneously, each GENCO i maximizes its operational profit with anticipation of their 

decisions’ effect on the reference price,  , and determines its quantity to sell [32]. 

Equation (4-14) implies balance of total demand and generation, (4-15) indicates that the 

generation level must not exceed its capacity, and (4-16) imposes a constraint on fuel 

availability, which also implies an upper bound on the generation level y and expanded 

capacity   
   , that restricts the feasible region and makes the problem computationally 

easier to solve. 

                                                             (4-13) 

         
 

  
   

     

  
                                         (4-14) 

     
                                                          (4-15) 

                                                             (4-16) 

                                                           (4-17) 



www.manaraa.com

125 

 

 

The reference node LMP and price premia at non-reference nodes that appear in (4-13) 

and (4-14) are respectively defined in equations (4-18) and (4-19), which link the dual 

variables,    , in the ISO’s problem and the reference price,   , in the GENCO’s problem. 

                                                         (4-18) 

                                                    (4-19) 

Working from the bottom to the top, the sub-problem in the third level is an 

equilibrium problem formed by combining equations (4-13) – (4-17) for each GENCO with 

(4-4) – (4-12), (4-18), and (4-19); the bi-level sub-problem in the lower two levels consists of 

the objective function (4-2) subject to constraint (4-3) and the decision variables (q, etc,), 

with corresponding dual variables, being optimal in the lower level equilibrium problem (4-

4) – (4-19); and the entire tri-level program includes the objective function (4-1) subject to 

the decision variables      being optimal in the bi-level sub-problem (4-2) – (4-19). 

4.3 Algorithm to Solve an EPEC Sub-problem  

To approach the optimization result of the tri-level expansion problem with electricity 

market, we first study its bi-level sub-problem, equations (4-2) – (4-19), without considering 

the ISO’s centralized transmission expansion decisions in the first level. It involves 

generation expansion decisions from multiple GENCOs, where each of their separate 

optimization problems is a bi-level problem with multiple followers including the other 

GENCOs and the ISO. Each GENCO’s bi-level problem in equations (4-2) – (4-19), can be 

reformulated as an MPEC by replacing the lower level optimization problems in equations 

(4-4) – (4-17) with their equivalent first-order optimality conditions in equations (4-20) – (4-
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35) [4]. Each perpendicular constraint, e.g.            
 , can be further converted to an 

equivalent nonlinear reformulation, e.g.,            
   . Therefore, for each 

equilibrium constraint, there are three corresponding dual variables: two for the equations or 

inequalities and one for the nonlinear reformulation of the perpendicular relationship, e.g., in 

equation (4-24),     
    and      

    are dual variables for equations           and 

  
   , respectively while      

  is the dual variable for the equation            
   . 

In each GENCO k’s problem, the other GENCOs’ capacity expansion decisions are 

considered as fixed parameters. The subscript of dual variables starting with k indicates the 

specific sets of dual variables for GENCO k. Also the dual variables for (4-18) and (4-19) 

are, respectively,     and     . 

                                                            (4-20) 

   
    

      
           

          
          

                      (4-21) 

         
     

     
     

                                         (4-22) 

                                                              (4-23) 

            
              

        
         

              (4-24) 

            
              

        
         

              (4-25) 

                                   
                 

         
          

  (4-26) 

                                  
                 

         
          

  (4-27) 

                
                

         
          

             (4-28) 

                
                

         
          

             (4-29) 

                                                       (4-30) 
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                                                    (4-31) 

      
 

  
                                                 (4-32) 

  
                                                 (4-33) 

                                                  (4-34) 

                                                     (4-35) 

4.3.1   Diagonalization Method (DM) 

One way to find an equilibrium solution, if one exists, is to iteratively solve each 

GENCO’s problem by fixing the other GENCOs’ expansion decisions to their current 

optimal solutions, which is called DM in [4]. In other words, the optimal solution determined 

by each GENCO should be identical to the value that the other GENCOs assume as a model 

parameter of their own optimization models. However, the existence of a pure Nash 

equilibrium (NE) strategy is not guaranteed for the EPEC sub-problem, and the GENCOs’ 

expansion decisions,   
    , can oscillate, usually among two or more different values within 

a small range, generally by 1-3% and at most 5% from our computational experience. 

Therefore, we define a maximum number of iteration cycles and an approximate NE solution 

as the average of the subsequential limiting solutions, which will be further illustrated in Part 

II of this paper in Chapter 5. 

Table 4- 5  Solving the EPEC Sub-problem by DM Algorithm 

DM Algorithm 

Input parameters             
      

; 

Let ConvergenceFlag = 0, Cycle=0; 
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Table 4- 5  (continued) 

While (ConvergenceFlag = 0 and Cycle  MaxCycle) 

        Let ConvergenceFlag = 1; 

        For GENCO  k = 1 to        

              Cycle = Cycle+1; 

              Solve GENCO k’s MPEC problem, Equations (4-2), (4-3), (4-18), (4-19), (4-20)-(4-

35), with optimal solution   
    ; 

              If     
       

          

                     ConvergenceFlag = 0; 

              End If;            

              Let    
      

    
    ; 

       End For 

End While 

Output             
                

      
  

 

The DM algorithm is illustrated in Table 4-5. First, we solve the MPEC for GENCO 

1 by initializing the values of other GENCOs’ expansion decisions            
      

 as model 

parameters. Once the optimal solution   
     for GENCO 1 is obtained, it is considered as a 

model input   
      

 to the next MPEC problem of GENCO 2 while             
      

 remain the 

same for the new problem. The iteration continues until the MPEC problem of the final 

GENCO is solved. Because the decision   
    can only be changed when the MPEC of 
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GENCO k is solved,   
    is updated once during a round of n iterations (one for each 

GENCO). If, after a round of iterations, the changes in value of each GENCO’s decision are 

all within the predefined threshold  , we conclude that an equilibrium has been identified and 

stop the iteration process. Otherwise, we continue the iteration until the predetermined limit 

is reached. The MPEC problem can be solved in GAMS by using the solver NLPEC [34], 

which first reformulates our MPEC into a nonlinear program (NLP), and then calls the NLP 

solver CONOPT [35] to solve the problem. 

4.3.2   Complementarity Problem (CP) Reformulation 

Another way to find a NE solution of the equilibrium bi-level sub-problem is through 

CP reformulation [4]. Combining the MPEC problem for each GENCO results in an 

equilibrium program with equilibrium constraints (EPEC). The CP reformulation combines 

the KKT conditions of each MPEC to reformulate the EPEC into a mixed complementarity 

problem (MCP). Given the lack of convexity of each MPEC, optimality to the CP 

reformulation is only a necessary condition for a solution to be an equilibrium of the original 

bi-level games, but not a sufficient condition. Specifically, the solution found by CP 

reformulation is a stationary point of the original EPEC problem. The derivation of the CP 

reformulation can be found in Appendix 4.A. 

4.4 A Hybrid Iterative Algorithm to Solve the Tri-level 

Programming Problem 

Upon CP reformulation of equations (4-2) – (4-19), the tri-level problem (4-1) – (4-

19), can be converted into a single level optimization problem with a set of nonlinear, linear 
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and complementarity constraints (4-38) – (4-95) as shown in Appendix 4.A. The 

reformulated problem, consisting of the equations (4-1) and (4-38) – (4-95), is a generalized 

MPEC with mixed integer, linear, nonlinear and equilibrium constraints, and can be solved 

by the NLPEC solver in GAMS. The NLPEC solver provides several different reformulation 

methodologies to approach MPEC problems [34]. The type of MPEC reformulation we 

found the most successful and reliable is to penalize violation of the equilibrium constraints 

in the objective function by first converting each equilibrium constraint,        , to its 

equivalent constraint set:             , and then including a term,    μ     , in the 

objective function. As the reciprocal penalty parameter μ    iteratively decreases to zero, the 

penalty applied to      increases until solutions eventually approximate      [34]. 

The two currently available algorithms to solve bi-level games as an EPEC are DM 

and CP reformulation. Based on our computational studies reported in Part II in Chapter 5, 

given a certain transmission expansion planning decision, the performance of DM is quite 

stable in successfully identifying the (approximate) Nash Equilibrium (NE) of the bi-level 

games; while the CP reformulation, since it is not an equivalent reformulation of the original 

bi-level game, can only find a stationary point and provide a bound for the original problem. 

However, the benefit of CP reformulation is to be able to solve the entire tri-level problem as 

a single level problem that includes the transmission expansion decisions    . With all these 

considerations in mind, we propose a hybrid iterative algorithm that takes advantage of both 

methods. It first solves a master problem, transformed from the CP reformulation, to propose 

a transmission expansion decision            in the n-th iteration. Given that transmission 

expansion plan, it employs DM to find an (approximate) NE point of the game of bi-level 
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games. The iterative solution procedure is illustrated in Figure 4-2, and a detail explanation 

of the hybrid algorithm is in Appendix 4.B. 

Initialize lower bound 

constraint (36)
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(Eqn. (2),(3),(18)-(35)) 

with Diagonalization Method 

by fixing zmast             
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 Figure 4- 2  A Hybrid Iterative Algorithm to Solve a Tri-level Problem with an EPEC 

Sub-problem 

The steps of the algorithm are detailed as follows: 

 Step 1: Set n to 0 and initialize the best found system net surplus,      , to 0, and let the 

objective value lower bound constraint (4-36) of MINLP master problem greater than 

     . Go to Step 2.  

               

where      
                  

 

 
    

                    
        

 

    
     

              
       

             
                (4-36) 

 Step 2: Solve a MINLP master problem A-n. If the MINLP master problem A-n can be 

successfully solved to an optimal solution, we fix the transmission expansion decision 
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          and continue to solve the EPEC sub-problem B with DM. Go to Step 3. 

Otherwise, the algorithm is terminated and best solution found so far is returned as the 

final solution. 

 Step 3: With optimal solution  
       

      
            found by DM, the system 

net surplus                   is calculated. If                        , go to Step 

4. Otherwise, go to Step 5. 

 Step 4: Update constraint (4-36) with                        , and add a constraint 

(4-37-n) to cut           point and update the best found solution and its objective value, 

                 . Let      , and go to Step 2.  

              
                       

                           (4-37-n) 

 Step 5: Add a constraint (4-37-n) to cut        . Let      , and go to Step 2. 

4.5 Conclusions 

In this paper, we consider an integrated transmission and generation expansion 

planning problem for a restructured electricity market environment. We propose a novel tri-

level programming model, where a centralized transmission expansion planning decision in 

the top level is made in anticipation of the multi-GENCOs’ responses in terms of their 

generation expansion decisions in the middle level, while each GENCO also makes its 

capacity expansion decision by anticipating the electricity market equilibrium results 

achieved by all the GENCOs making their generation decisions, and an ISO’s market 

clearing problem in the bottom level. 
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The tri-level programming model includes an EPEC problem, which can be 

approached by either the diagonalization method (DM) or a complementarity problem (CP) 

reformulation. To solve the tri-level optimization problem, a hybrid iterative algorithm is 

proposed by taking advantage of the strengths of both DM algorithm and CP reformulation. 

The benefit of applying CP reformulation is its capability to transform the tri-level model 

into a single level MINLP problem, which can be solved by the DICOPT solver, and identify 

a promising transmission planning decision in each iteration. On the other hand, given a 

preselected transmission expansion decision, the DM algorithm works more reliably and 

efficiently to find the corresponding (approximate) Nash Equilibrium (NE) point for the 

generation expansion bi-level games. 

The problem we consider in this paper is a static model that considers only a single 

hour in a future year, which will always result in the generation levels y being equal to the 

new capacity levels     . In the future, we can extend the model and the algorithm to take 

into account multiple periods and uncertainties.  

Part II of the paper in Chapter 5 will continue with numerical results. 

Appendix 4.A CP Reformulation for Multiple GENCO’s EPEC Sub-

problem 

The CP reformulation for the EPEC sub-problem, equations (4-38) – (4-95), are 

derived as following, based on [4].   represents the Lagrange function of the second level 

problem, equations (4-2) – (4-19), with nonlinear reformulation, equations (4-20) – (4-35), 

replacing the third level problem, equations (4-4) – (4-19).  
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4.A.1  Partial Derivatives of Lagrange Function 

There are all together 19 sets of equality constraints with dimension        

                                   . They have the same number of unrestricted 

variables to match them, respectively      ,      ,       ,      ,      ,      ,      , 

     
 ,      

 ,      
 ,      

 ,      
 ,      

 ,      ,      ,       ,      ,    ,     . 

    
    

    
                                               (4-38) 

                                                           (4-39) 

         
       

   
      

       
   

         
           

    
          

      

      
    

             
           

    
          

           
    

                   

  (4-40) 

                       
        

    
       

        
    

       
        

    
  

     
        

    
                                     (4-41) 

                                                             

                                                     (4-42) 

                                                            (4-43) 

   
                                                            (4-44) 

                                                           (4-45) 
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                             (4-49) 

    
               

        
                                       (4-50) 

    
              

        
                                         (4-51) 

                                                          (4-52) 

                 
 

  
                                       (4-53) 

   
                      

                                 (4-54) 

   
                                                    (4-55) 

                                                        (4-56) 

4.A.2  KKT Conditions Derived from the Optimization Problems in the Second 

Level 

There are all together 21 sets of inequality constraints with dimension of        

                                   . They have the same number of positive variables 

to match them, showed as the dual variables in the constraints. 

  
                                                          (4-57) 

              
                                              (4-58) 

              
                                              (4-59) 



www.manaraa.com

136 

 

 

                                
                          (4-60) 

                               
                          (4-61) 

                  
                                            (4-62) 
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                                                (4-68) 

   
         

                                                 (4-69) 

   
         

                                                (4-70) 

                                                        (4-71) 

  
                                                     (4-72) 

                                                      (4-73) 
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                                                       (4-76) 

                                                         (4-77) 
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4.A.3  Equivalent KKT Conditions Derived from the Optimization Problems in 

the Third Level 

There are all together 18 sets of constraints, among which there are 8 sets of equality 

constraints with dimension of                    and 10 sets of inequality constraints 

with dimension of                  . The equality constraints have the same amount of 

unrestricted variables to match them, respectively   ,   ,    ,   ,  ,   ,   ,   , while the 

inequality constraints have the same number of positive variables to match them, showed as 

the dual variables in the constraints. 

                                                               (4-78) 
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                                                         (4-90) 

  
                                                   (4-91) 

                                                    (4-92) 

                                                       (4-93) 

                                                            (4-94) 

                                                        (4-95) 

Appendix 4.B Details of the Hybrid Algorithm Solving the Tri-level 

Problem 

To improve the computational efficiency and algorithm stability, the complementarity 

constraints are excluded from the master problem. Therefore the initial master problem A-0 

includes the objective function (4-1), and all the nonlinear, and linear constraints (4-38) – (4-

95) converted from the CP reformulation except for the complementarity constraints (4-57) – 

(4-77) and (4-84) – (4-93). The master problem is updated after each iteration and defined as 

master problem A-n after the nth iteration. For    , the problem A-n includes constraint 

(4-36) to update the best lower bound for the objective function, and constraints (4-37-m), 

        , to duplicating a previously proposed          . Therefore, problem A-n is a 

mixed integer nonlinear program (MINLP), which can be solved by the DICOPT solver [36] 

in GAMS. The sub-problem as bi-level games is equivalently reformulated as an EPEC sub-

problem B including equations (4-2), (4-3) and (4-18) – (4-35) for all the GENCOs.  

Here, we define the original tri-level problem C, (4-1) – (4-19); and the reformulated 

single level problem D, (4-1) and (4-38) – (4-95), based on CP reformulation. The EPEC 
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sub-problem B shares the same feasible region as the original tri-level problem C. The 

reformulated single level problem D solves for the stationary points, including the optimal 

solution, for the original problem C. The master problem A-0 is a further relaxation of 

problem D by removing all the complementarity constraints, and thus the optimal solution for 

the original problem C is also included in the feasible region of master problem A-0. 

However the feasible solution for problem A-0 is not necessarily feasible for the original tri-

level problem C, or the EPEC sub-problem B. 

The purpose of solving the MINLP master problem A-n at each major iteration in 

Step 2 is to search for a possibly better transmission plan           with 

            Ω               . However, since the feasible solution for master problem A-

0 is not necessarily feasible to the original tri-level problem C, the Ω
        

 solved might 

not be feasible for the original problem due to the relaxation of the complementarity 

constraints in (4-57) – (4-77) and (4-84) – (4-93) from the CP reformulation.  

To examine whether the           indeed results in a higher net surplus than      , an 

EPEC sub-problem B, which has the same feasible region as the original tri-level problem C, 

is solved in Step 3 given          . If the             Ω     is better than      ,           

is confirmed to be better, so we updated constraint (4-36) by letting       equal to 

            Ω    . Meanwhile, no matter whether             Ω     is better than       or 

not, we add constraint (4-37-n) to prevent the           solution from being found in the 

MINLP master problem again. With the iteratively reduced feasible region of the master 

problem constrained by equations (4-36) and (4-37-n), it will ultimately arrive a point where 

there is no longer any feasible solution z that can generate a higher surplus than       in the 
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master problem. Since the optimal solution of the original tri-level problem C must be a 

feasible solution of the initial master problem A-0 transformed from the CP reformulation, 

having relaxed the complementarity constraints, there is no need to continue the search. Thus 

the algorithm terminates with the best z found so far and its corresponding      .  
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CHAPTER 5 A TRI-LEVEL MODEL WITH AN EPEC SUB-PROBLEM 

FOR CENTRALIZED TRANSMISSION AND DECENTRALIZED 

GENERATION EXPANSION PLANNING FOR AN ELECTRICITY 

MARKET: PART II 

Submitted to IEEE Transactions on Power Systems 

Shan Jin and Sarah M. Ryan 

Abstract 

We study a tri-level integrated transmission and generation expansion planning 

problem in a deregulated power market environment. The collection of bi-level sub-problems 

in the lower two levels is an equilibrium problem with equilibrium constraints (EPEC) that 

can be approached by either the diagonalization method (DM) or a complementarity problem 

(CP) reformulation. This paper is a continuation of its Part I in Chapter 4, in which a hybrid 

iterative algorithm is proposed to solve the tri-level problem by iteratively applying the CP 

reformulation of the tri-level problem to propose solutions and evaluating them in the EPEC 

sub-problem by DM. It focuses on the numerical results obtained by the hybrid algorithm for 

a 6 bus system, a modified IEEE 30 bus system and a IEEE 118 bus system. In the numerical 

instances, the (approximate) Nash equilibrium point for the sub-problem can be verified by 

examining local concavity. 
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5.1 Introduction 

This paper is a continuation of its Part I in Chapter 4. There, we formulate a 

generation and transmission expansion planning problem as a mixed integer tri-level 

programming problem, with the centralized transmission planning decision in the first level, 

multi-GENCOs’ generation expansion decisions in the second level, and an electricity market 

equilibrium problem in the third level.  

A bi-level centralized generation, transmission and fuel transportation expansion 

problem was formulated in [1], in which a centralized expansion decision is made in the top 

level and an operational game among GENCOs, ISO and a fuel supplier was modeled in the 

lower level. In Part I of this paper, we extend the previous model to a tri-level expansion 

model with consideration of the strategic expansion decision made by each GENCO in the 

second level and a centralized transmission expansion decision in the first level. Different 

from [1], we do not account for fuel network expansion and dispatch decisions in this paper. 

Instead we add a fuel supply capacity constraint into each GENCO’s operational problem to 

represent a potential fuel limit. In the third level, each GENCO makes its strategic 

operational decision while the ISO clears the market. 

In a restructured market, both the expansion planning and the operational decisions 

are no longer decided from a centralized perspective. Instead, each individual GENCO makes 

its own expansion decision in anticipation of market clearing by an integrated system 

operator (ISO), and the GENCOs submit their supply function bids in the day-ahead market. 

Therefore the generation expansion problem can be modeled as bi-level games among the 

GENCOs. In our model, instead of modeling the GENCO’s bidding pair of quantity and 



www.manaraa.com

147 

 

 

price, we assume that each GENCO makes its decision on generation quantity under a type of 

bounded rationality [2]. 

Part I in Chapter 4 includes a full literature review of the modeling aspects of our 

formulation. Here, we focus on previous related numerical results. Nanduri et al. [3] modeled 

a two-tier matrix game for a multi-period, multi-GENCO capacity expansion model with an 

investment game in the upper level and a supply function game in the lower level with 

consideration of a transmission network. They proposed an algorithm to solve the matrix 

game to its optimal Nash equilibrium (NE) point, and applied it to a 5 bus system. Wang et 

al. [4] investigated bi-level games for a multi-GENCO capacity expansion planning problem 

in which GENCOs make their capacity and bidding decisions in the upper level and ISO 

clears the market in the lower level, proposed a co-evolutionary algorithm with pattern 

search, and applied it to an 8 bus network system, to identify the NE solution of the 

competition. Li et al. [5] and Soleymani et al. [6] modeled bi-level games with GENCOs’ 

bidding decisions in the upper level and ISO clearing the market in the lower level, for which 

two iterative methods were illustrated in [5] for an 8 bus system, and a search based 

algorithm was applied to a 6 bus system in [6]. Ruiz et al. [7] studied a multi-GENCO bi-

level bidding problem subject to a market clearing problem in the lower level, and solved it 

as an EPEC problem, which can be reformulated as a mixed integer linear programming 

problem. A case study of an IEEE Reliability Test System (RTS) [8] was presented.  

When the GENCOs, modeled as Cournot competitors, make their expansion decisions 

in anticipation of the market clearing results, their decisions are also affected by the 

transmission capacity. Sauma and Oren et al. [9] modeled a multi-GENCO capacity 
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expansion problem for a restructured electricity market, given various transmission 

expansion plans, as bi-level games and evaluated the social welfare of the system. An 

iterative algorithm to solve the bi-level games was illustrated on a 30 bus system. Roh et al. 

[10] simulated the interactions among GENCOs, TRANSCOs and ISO, and applied an 

iterative algorithm to a 6 bus system to solve a generation and transmission planning 

problem. The algorithm first solved resource planning problems of each GENCO and 

TRANSCO to maximize its profit with forecasted locational marginal price (LMP) and 

flowgate marginal price (FMP). Within each iteration, an ISO reliability check problem 

evaluated the system reliability in terms of loss of energy probability and provided capacity 

signals to the resource planning problem; while an ISO total social cost minimizing problem 

updated the LMP and FMP and provided price signals to the resource planning problems. 

Motamedi et al. [11] proposed a framework to consider decentralized GENCOs’ reactions to 

the transmission expansion decision and anticipations of clearing prices from a restructured 

electricity market, formulated it as a four level model approached by agent-based system and 

search-based techniques, and applied it to a 5 bus system. Hesamzadeh et al. [12] solved a 

tri-level transmission augmentation planning problem with strategic generation expansion 

and operational decisions by a hybrid bi-level /island parallel genetic algorithm, tested on an 

IEEE 14-bus system. The first level minimizes the social cost including the transmission 

augmentation cost and the system operational cost. The bottom two levels are bi-level games, 

in which GENCOs, on the top level, maximize their profits by determining a price and 

quantity bid pair and expansion level, with anticipation of a social cost minimization problem 

based on a security constrained economic dispatch model in the bottom level. Pozo et al. [13] 
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studied a tri-level generation and transmission model, in which the investment and 

operational cost is minimized in the first level, the GENCOs maximize profit from expansion 

in the second level, and a market equilibrium problem with perfect competition among the 

GENCOs forms the third level. The GENCOs’ MPEC problems were combined into a mixed 

integer linear programming problem by linearization of the nonlinear components in the 

objective functions and mixed integer reformulation of the equilibrium constraints. The 

model was tested on a 34-bus realistic power system in Chile. The problem we study is most 

similar to [9] but we treat the transmission plan as a decision variable in the optimization 

problem rather than a parameter. Our tri-level model also has a similar structure to the model 

investigated in [13]. However, we consider price-responsive linear demand functions and 

strategic operational decisions by the GENCOs. The problem structure is also similar to [12] 

but we apply mathematical programming to approach the solution instead of a heuristic. We 

test the solution accuracy and scalability on a 6 bus system, a modified IEEE 30-bus system, 

and the IEEE 118 bus system. 

The model in our paper has a complicated tri-level structure with an equilibrium bi-

level sub-problem and is difficult to solve. Algorithms are first proposed to solve the 

equilibrium bi-level sub-problem. Because bi-level games can be reformulated into an 

equilibrium problem with equilibrium constraints (EPEC), two currently available 

methodologies, diagonalization method (DM) and complementarity problem reformulation 

(CP), discussed in [15], are applied in Part I to help reformulate and solve the EPEC sub-

problem and the tri-level problem. Further, we propose a hybrid iterative algorithm in Part I 
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of the paper in Chapter 4 to solve the entire tri-level-programming problem by taking 

advantage of both these methods.  

In this paper, three case studies are presented to illustrate how the algorithm proposed 

in Part I in Chapter 4 works to find the best transmission expansion plan, which can generate 

the largest net surplus in the system, in anticipation of generation expansion, production and 

market clearing decisions.  

In Section 5.2, the numerical results are presented. Section 5.3 concludes the paper. 

5.2 Numerical Results 

For illustration, the hybrid algorithm has been applied to a small 6 bus system, a 

modified IEEE 30 bus test system, and the IEEE 118 bus sytem. In the 6 bus system, all the 

transmission planning options can be enumerated so that we are able to validate the global 

optimality of the solution found by the hybrid algorithm. The 30 bus system tests the 

scalability of the method and allows comparison with previous results in [9]. In the 118 bus 

system, global optimality among a restricted, realistic, set of transmission expansion options 

is verified. All the computational results are computed in GAMS23.4, and run on a 3.4GHz 

Intel Pentium 4 processor with 4 GB of RAM and 64 bit windows 7 system.  

5.2.1 6 Bus System  

1

654

32

C

B

A

 
Figure 5- 1 A 6 Bus Test System with Three Candidate Lines 
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Table 5- 1 Model Parameters for Bus Nodes  

     

(MW) 

  
    

 

($/MW) 

   

($/MWh) 

   

($/MWh/MWh) 

   

(MW) 

   

($/MWh) 

   

($/MWh/MWh) 

1 80 10 20 0.0625 1800 100 -1 

2 50 10 20 0.0625 1800 100 -1 

3 n/a n/a n/a n/a 0 120 -1 

4 n/a n/a n/a n/a 0 120 -1 

5 n/a n/a n/a n/a 0 120 -1 

6 20 6 40 0.2500 1200 100 -1 

 

Table 5- 2  Model Parameters for Transmission Lines 

          (MW)    (   )    
     

($/MW) Line Status 

(1,2) 200 5.9 n/a Existing 

(1,3) A 100 30 4 Candidate 

(1,4) 50 3.9 n/a Existing 

(2,3) 100 27 n/a Existing 

(2,4) 100 5.1 n/a Existing 

(2,5) B 100 30 4 Candidate 

(3,5) C 100 30 4 Candidate 

(3,6) 100 55.5 n/a Existing 

(4,5) 50 27.0 n/a Existing 

(5,6) 100 5.1 n/a Existing 
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Figure 5- 2 Net Surplus and GENCOs’ Net Profits with Different Transmission 

Expansion Plans for A 6 Bus System 

 

For a demonstration case, we present a 6 bus network with three GENCOs on Buses 

1, 2 and 6, and three candidate transmission lines shown in Figure 5-1, where solid lines 

represent the existing transmission lines and dotted lines represent the candidate lines. 

All the model parameters are presented in Table 5-1 and Table 5-2. The three 

candidate lines are called lines A, B and C. The initial values   
      

 for the DM algorithm 

are set to equal their current values   . 

Each of the eight feasible transmission expansion solutions can be evaluated in the 

equilibrium bi-level sub-problem by DM. Figure 5-2 compares the system net surplus and the 

profit for each GENCO among all the solutions, and it indicates that building transmission 

line A only is the global optimal solution according to system net surplus. 

The iterative results obtained by the hybrid algorithm are presented in Table 5-3. In 

the first iteration, the master problem identifies building line A only as a promising initial 
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transmission planning decision. Assuming this line is built, DM identifies an (approximate) 

NE for the multi-GENCO expansion decisions. The lower bound for the upper-level 

objective value and best found solution are updated, and a cut constraint is added to the 

master problem to eliminate the current solution of building line A only. The master problem 

becomes infeasible at its second iteration, which implies that all the other transmission plans 

other than building line A only cannot produce a net surplus in the master problem higher 

than 14348.46. Therefore, the algorithm terminates with the best found solution of building 

line A only, which is the global optimal solution of the original tri-level programming 

problem, as shown in Figure 5-2. The hybrid algorithm takes only two major iterations and 

one DM evaluation to find the optimal solution within 104.41 seconds. In comparison, 

enumerating all solutions and evaluating each by DM requires a total of 542.82 seconds. 

Table 5-4 summarizes the detailed results obtained with different transmission 

expansion plans, where we can draw the same conclusion from the total net surplus, that the 

global optimal solution is to build line A only. From Table 5-4, when there is no transmission 

expansion, the system experiences congestion in line (2, 3). When one transmission line, A, 

is built, the congestion is relieved and the electricity price decreases. The GENCOs have less 

market power to drive a high market price by expanding and generating less. Instead, the 

GENCOs maximize their profit by making the expansions to sell more power. Therefore, the 

buyers receive more electricity with lower prices, which results in higher buyer surplus. 

Compared with plan “None”, the buyer surplus and seller surplus both increase. Because the 

increase in the system surplus is sufficient to cover the cost of building transmission line A 

and extra generation expansion cost, plan “A” is much more favored than plan “None”. 
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Unlike in plan “A”, in plans “B” and “C”, the network congestion has not been eliminated. 

Although building only transmission line B leads to a slight decrease in electricity price, and, 

thus, an increase in both buyer surplus and seller surplus, the overall system net surplus is not 

as high as in plan “A”. In plan “C”, the system congestion becomes even worse, which leads 

to higher electricity prices, and the buyer surplus and seller surplus both decrease. Plans 

“AB” and “ABC” result in the same generation expansion level, and quantity consumed as 

plan “A”, but at a higher transmission expansion cost. Therefore it is obvious that plan “A” is 

preferred. Plans “AC” and “BC” generally help to relieve the congestion and increase the 

system efficiency with a higher system net surplus. However they have higher transmission 

investment cost and lower increase in system surplus than plan “A”. 

We observe that the best transmission expansion plan can not only increase the total 

net surplus but also guide the market participants to achieve a win-win situation in which 

total buyer and seller surpluses can be increased by 22% and 7%, respectively. The total net 

surplus increase comes mostly from the increasing total buyer surplus, which is driven by the 

increasing generation capacity expansions and the lower electricity prices. 

Table 5- 3  Iterative Results of the Hybrid Algorithm to Solve a 6 Bus Case Study 

Major 

Iter. 

MINLP Master Problem A with CP 

Reformulation 

EPEC Sub-

problem B with 

DM 

Adding 

Constraints 

Status         
Net Surplus 

           
        

Net Surplus 

           
     

Lower 

Bound 

      

Cut 

Point 

        

1 Feasible A 15244.07 14348.46 14348.46 A 

2 Infeasible     
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Table 5- 4  Detail Results with Different Transmission Expansion Plans 

  

No A B C AB AC BC ABC 

Total Surplus 13502 15908 14690 12561 15908 15509 14921 15908 

Total Buyer Surplus 3929 6347 4808 3394 6347 5871 5130 6347 

Total Seller Surplus 9202 9561 9861 8596 9561 9638 9791 9561 

Total Transmission 

Rent 

371 0 21 571 0 0 0 0 

Total Generation 

Investment Cost 

535 1159 800 362 1159 1043 870 1159 

Total Transmission 

Investment Cost 

0 400 400 400 800 800 800 1200 

Total Net Surplus 12967 14348 13490 11799 13948 13666 13251 13548 

Gen. Expan. 

Level,   
    

= Gen. 

Level,    

1 99.98 120.36 105.93 98.20 120.36 126.39 117.48 120.36 

2 74.63 120.36 100.09 54.38 120.36 101.51 93.93 120.36 

6 34.86 28.66 26.58 42.68 28.66 30.66 29.34 28.66 

Quantity 

Consumed, 

   

1 27.23 34.90 28.88 26.04 34.90 33.09 30.13 34.90 

2 28.17 34.90 28.90 28.62 34.90 33.09 30.13 34.90 

3 41.39 54.90 48.54 38.98 54.90 53.09 50.13 54.90 

4 45.81 54.90 48.87 42.15 54.90 53.09 50.13 54.90 

5 45.16 54.90 48.86 40.37 54.90 53.09 50.13 54.90 

6 21.71 34.90 28.56 19.10 34.90 33.09 30.13 34.90 
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Table 5- 4  (continued) 

Electricity 

Price,    

1 72.77 65.10 71.12 73.96 65.10 66.91 69.88 65.10 

2 71.83 65.10 71.10 71.38 65.10 66.91 69.88 65.10 

3 78.61 65.10 71.46 81.02 65.10 66.91 69.88 65.10 

4 74.19 65.10 71.13 77.85 65.10 66.91 69.88 65.10 

5 74.84 65.10 71.14 79.63 65.10 66.91 69.88 65.10 

6 78.29 65.10 71.44 80.90 65.10 66.91 69.88 65.10 

Flow,     

(1,2) 31.10 0.66 41.88 37.39 9.10 3.15 48.27 6.89 

(1,3) 0.00 51.87 0.00 0.00 58.41 71.54 0.00 63.41 

(1,4) 41.64 32.93 35.17 34.77 17.95 18.61 39.09 15.17 

(2,3) 50.00 43.64 50.00 50.00 10.91 49.96 49.28 25.55 

(2,4) 27.57 42.48 9.79 13.15 15.60 21.61 9.39 13.88 

(2,5) 0.00 0.00 53.28 0.00 68.06 0.00 53.40 52.92 

(3,5) 0.00 0.00 0.00 28.22 0.00 57.26 -1.35 24.53 

(3,6) 8.61 40.62 1.46 -17.20 14.42 11.14 0.51 9.53 

(4,5) 23.40 20.51 -3.90 5.77 -21.35 12.88 -1.65 -25.85 

(5,6) -21.75 -34.38 0.52 -6.38 -8.18 -8.71 0.28 -3.29 

 

5.2.2   Modified IEEE 30 Bus Test System 

The modified IEEE 30 Bus Test System includes six generators on nodes 1, 2, 13, 22, 

23 and 27, thirty-nine transmission lines, and ten candidate transmission lines. Based on the 

30 bus case study in [9], the model parameters are set up as shown in Appendix 5.A. 
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Different from [9], we assume a quadratic generation cost function that is not affected by the 

increasing generation capacity, and we do not consider expanding the capacity of the existing 

transmission lines. All the GENCOs have the same generation cost function with       and 

         . The ten candidate lines are labeled as A through J, among which the lines B, E, 

G, and H are the proposed new lines in [9]. The total number of all transmission expansion 

options totals         , which makes evaluation of each by DM computationally 

prohibitive. The network is in Figure 5-3, where solid lines represent the existing 

transmission lines and dotted lines represent the candidate lines. 
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Figure 5- 3  A Modified IEEE 30 Bus Test System with Ten Candidate Lines 
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The larger problem size causes computational difficulty to solve the MINLP master 

problem at the beginning of each major iteration. Because the purpose of the master problem 

is to identify a promising transmission planning decision, it can be further relaxed by 

ignoring equations obtained from the partial derivatives of the Lagrangian with respect to the 

dual variables; i.e., equations (4-43) - (4-54) in Part I of this paper in Chapter 4.   

The iterative results obtained by the hybrid algorithm are given in Table 5-5. In the 

fourth major iteration the algorithm finds the optimal solution, which is to build only 

candidate line H. This result also appears to be consistent with the case study results found in 

[9]. Except for the adjustment of the parameters due to model differences, the 30 bus case 

study is the same as the one in [9]. Besides the instance with ten candidate lines, we also 

examine a 30 bus case study with the four new transmission lines B, E, G, and H, suggested 

in [9], and the results also indicate building line H only. All the 16 feasible transmission 

expansion solutions can be evaluated in the EPEC sub-problem by DM. Figure 5-4 compares 

the system net surplus and the profit for each GENCO given all transmission expansion 

options, and it indicates that building transmission line D only is the global optimal 

transmission expansion decision. Although we do not have the DM solutions for all 1024 

transmission expansion options to validate the best solution found by the hybrid algorithm, 

based on the results of the 30 bus instance with four candidate lines in Figure 5-4, it is very 

likely that building line H only is the global optimal solution for the tri-level expansion 

planning problem. The total computational time for the hybrid algorithm is 5591.97 seconds. 
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Figure 5- 4  Net Surplus and GENCOs’ Net Profits with Different Transmission 

Expansion Plans for a modified IEEE 30 Bus Test System 

 

Table 5- 5  Iterative Results of the Hybrid Algorithm to Solve a Modified IEEE 30 Bus 

Test System 

Major 

Iter. 

MINLP Master Problem A with CP 

Reformulation 

EPEC Sub-

problem B with 

DM 

Adding 

Constraints 

Status         

Net Surplus 

           
        

Net Surplus 

           
     

Lower 

Bound 

      

Cut 

Point 

        

1 Feasible No 13235.34 13038.62 13038.62 No 

2 Feasible B 13057.90 12727.90 13038.62 B 

3 Feasible E 13216.10 12957.11 13038.62 E 

4 Feasible H 13246.07 13066.56 13066.56 H 

5 Infeasible     
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Given expansion on candidate line H, the DM results for the optimal generation 

capacity vector,     , are indicated in Figure 5-5. Based on much computational experience, 

the optimal solutions usually stabilize within 10 to 15 rounds of iterations, so we set 25 as a 

maximum number of iteration cycles to terminate the DM algorithm when it is impossible to 

find an exact NE point. Because there are six different GENCOs making their capacity 

decisions in each round of iteration, it results in a maximum of 150 MPEC solution 

iterations.  

 

Figure 5- 5 Iteration of Expansion Capacity      with Transmission Expansion on Line 

H  

From Figure 5-5, since the optimal solution does not converge, we infer existence of a 

mixed, rather than pure, Nash strategy. The GENCOs’ decisions oscillate within a small 

range of approximately 1%: GENCO 1 slightly adjusts its decision between the values 99.94 

and 100.88; GENCO 2 between the values 99.94 and 100.52; GENCO 13 between 77.94 and 

78.03; GENCO 22 between 105.24 and 105.87; while both GENCOs 23 and 27 are 

converged to a capacity of 60 MW each. In this case, we can simply define an approximate 

equilibrium point by averaging the two capacity values for a generator, so that the optimal 
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generation expansion capacities   
    , j = 1, 2, 13, 22, 23 and 27, are approximately [100.41, 

100.23, 77.99, 105.56, 60, 60] and the generation levels     , j = 1, 2, 13, 22, 23 and 27,  are 

the same as their new generation capacities. The net profits for each GENCO are [1586.50, 

1583.39, 1581.42, 1632.46, 1050.94, 1076.19], and the total system net surplus is 13066.56. 

5.2.3   Nash Equilibrium (NE) Solution Validation 

The DM algorithm is applied to iteratively solve each single bi-level programming 

problem, reformulated as an equivalent mathematic program with equilibrium constraints 

(MPEC) including equations (4-2), (4-3), (4-18) – (4-35) for each specific GENCO k, within 

the EPEC sub-problem B. The (approximate) convergence point is an NE point, where no 

GENCO can improve its profit by changing only its own capacity expansion decisions while 

all the other GENCOs’ decision remain fixed. To ensure the (approximate) convergence 

point, each GENCO’s MPEC in the DM iteration should be solved to its local optimality. 

However the objective function (4-2) of each MPEC in Part I in Chapter 4 is nonlinear and 

not ensured to be concave, which implies no guarantee for the global optimality. To validate 

that the solution found by DM approximates an NE, we must further investigate the objective 

values of neighboring points. 

For each single MPEC, we can reformulate the lower level problem by introducing 

the binary variables    and and a big value M, and converting all the equilibrium constraints 

of the form           into                        as in our previous 

paper [1]. Upon this reformulation, the MPEC becomes a single level programming problem 

with mixed integer linear constraints and nonlinear objective function given by equation (4-
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2) in Part I of Chapter 4. For GENCO 1, given the optimal solutions of the other GENCOs as 

the model parameters, we evaluate the net benefits for the neighboring points of the optimal 

solution,       . Variable   
    can be fixed from its existing capacity 60 to 120 to 

investigate the change of the objective values in response to it. Once the variable   
    is 

fixed, its optimal generation variable      
    can be determined, since there is no 

incentive to expand beyond the actual generation level that is needed
1
. In this case, the single 

level nonlinear mixed integer programming (MIP) problem has been transformed to a single 

level linear MIP problem, which can be solved to its global optimality by CPLEX. The only 

variable involved in the objective function is p. In the case of making no expansion, like 

GENCO 23 and 27, because   
     has to be higher than the existing capacity, 60, we 

evaluate the net profits for the neighboring area by fixing   
    from 60 to a predetermined 

higher value. Figure 5-6 presents the relationship among the objective value, the net profit of 

GENCO 1, and its capacity decision   
   . The net profit at the top is an enlargement of the 

bottom one. It indicates concavity of the GENCO’s objective, given in equation (4-2) of Part 

I in Chapter 1, as a function of   
    with the global optimal solution between 100 and 101, 

which is consistent with the approximate optimal point 100.41 found by the DM algorithm. 

The same test can be applied to each GENCO to validate the global optimality of each 

GENCO’s MPEC problem, which further verifies that the optimal solution found by the DM 

algorithm is indeed the local NE point of the EPEC sub-problem B.  

                                                

1
 Here, the model is a one time period model. However, in a stochastic EPEC, the generation level y does not necessarily equal the 

capacity level      in all scenarios. To validate an (approximate) NE point in the stochastic EPEC case, we can also first fix a GENCO k’s 

capacity level    
    in a range of values. Given each fixed value   

   , we can solve a set of pairs of optimal generation level and dual 

price        
          

      under each scenario s, so that we can calculate profit for GENCO k expanding at   
    in equation (4-2) in Part 

I of the paper. We can compare those profits for GENCO k at all the different capacity level   
    and find the   

   with the highest profit. 
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Figure 5- 6  Investment Cost, Operational Profit and Net Profit by Expansion Capacity 

  
   

  

5.2.4   IEEE 118 Bus Test System 

The algorithm was also tested on a standard IEEE 118 bus system with 54 generators, 

179 existing lines and 4 candidate lines. The candidate lines were selected as likely to help 

relieve the congestion in the existing system. All the nodes have the same linear demand 

functions with        and      . The capacities of existing lines are assumed to be 

    =50, and     = 100 for the candidate lines. Detailed parameter assumptions for GENCOs 

and transmission lines are shown in Tables 5-8 and Table 5-9 in Appendix 5.B. 

The algorithm identified the best solution at the first major iteration and found two 

more feasible, though inferior, solutions in the second and third rounds. The best solution 

returned is to build the transmission lines A, C and D. We observe that even after building 

three candidate lines, system congestion still exists. 

We also obtained the global optimal solution of the 118 bus case study by 
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enumerating all the 16 possible transmission expansion options, and verified that the best 

solution found by the algorithm turned out to be globally optimal in this instance. 

5.3     Conclusions 

In this paper, we consider an integrated market-based transmission and generation 

expansion planning problem in a deregulated electricity market environment. The novel tri-

level programming model proposed in Part I of the paper includes an equilibrium bi-level 

sub-problem, also known as an EPEC, which can be solved by either a diagonalization 

method (DM) or a complementarity problem (CP) reformulation. To approach the tri-level 

optimization problem, a hybrid iterative algorithm is proposed in Part I of the paper in 

Chapter 4 by taking advantage of both methods.  

The proposed algorithm has been tested both on three systems. In the smallest 

instance, where all the feasible transmission expansion solutions can be enumerated, the 

solution found by the hybrid algorithm has been shown to be globally optimal. The solutions 

of the 30 and 118 bus systems were also successfully found by the hybrid algorithm. To deal 

with the cases where a pure Nash equilibrium strategy does not exist, an approximate NE 

point has been defined. Finally, a method has been proposed to validate the (approximate) 

NE point found by DM algorithm.  

Appendix 5.A Model Parameters for Modified IEEE 30 Bus Test 

System 
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Table 5- 6  Model Parameters for Bus Nodes of a Modified IEEE 30 Bus Test System 

    (MW)   
    

($/MW)   ($/MW/MW)   ($/MW) 

1 60 8 -1 50 

2 60 8 -1 50 

3 0 0 -1 60 

4 0 0 -1 55 

5 0 0 -1 50 

6 0 0 -1 50 

7 0 0 -1 60 

8 0 0 -1 55 

9 0 0 -1 50 

10 0 0 -1 55 

11 0 0 -1 50 

12 0 0 -1 55 

13 60 8 -1 50 

14 0 0 -1 55 

15 0 0 -1 55 

16 0 0 -1 50 

17 0 0 -1 55 

18 0 0 -1 50 

19 0 0 -1 55 

20 0 0 -1 50 
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Table 5- 6  (continued) 

21 0 0 -1 50 

22 60 8 -1 50 

23 60 8 -1 60 

24 0 0 -1 55 

25 0 0 -1 50 

26 0 0 -1 50 

27 60 8 -1 50 

28 0 0 -1 50 

29 0 0 -1 50 

30 0 0 -1 55 

 

Table 5- 7  Model Parameters for Transmission Lines of a Modified IEEE 30 Bus Test 

System 

          (MW)    (   )    
     

       Line Status 

(1,2) 130 15 n/a Existing 

(1,3) 130 4.92 n/a Existing 

(2,4) 65 5.23 n/a Existing 

(3,4) 130 23.53 n/a Existing 

(2,5) 130 4.71 n/a Existing 

(2,6) 65 5 n/a Existing 

(4,6) 90 23.53 n/a Existing 
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Table 5- 7  (continued) 

(5,7) 70 7.1 n/a Existing 

(6,7) 130 10.96 n/a Existing 

(6,8) 32 23.53 n/a Existing 

(6,9) 65 4.76 n/a Existing 

(6,10) 32 1.79 n/a Existing 

(9,11) 65 4.76 n/a Existing 

(9,10) 65 9.09 n/a Existing 

(4,12) 65 3.85 n/a Existing 

(12,13) 65 7.14 n/a Existing 

(12,14) 32 3.17 n/a Existing 

(12,15) 32 5.96 n/a Existing 

(12,16) 32 4.16 n/a Existing 

(14,15) 16 2.26 n/a Existing 

(16,17) 16 4.47 n/a Existing 

(15,18) 16 3.64 n/a Existing 

(18,19) 16 6.34 n/a Existing 

(19,20) 32 12.07 n/a Existing 

(10,21) 32 12.07 n/a Existing 

(10,22) 32 5.47 n/a Existing 

(21,22) 32 40 n/a Existing 

(15,23) 16 4 n/a Existing 
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Table 5- 7  (continued) 

(22,24) 16 3.85 n/a Existing 

(23,24) 16 3.01 n/a Existing 

(24,25) 16 2.28 n/a Existing 

(25,26) 16 1.84 n/a Existing 

(25,27) 16 3.74 n/a Existing 

(27,28) 65 2.5 n/a Existing 

(27,29) 16 1.87 n/a Existing 

(27,30) 16 1.3 n/a Existing 

(29,30) 16 1.73 n/a Existing 

(8,28) 32 4.59 n/a Existing 

(6,28) 32 15 n/a Existing 

(1,26) A 100 23.53  4 Candidate 

(2,18) B 100 23.53 4 Candidate 

(7,23) C 100 23.53 4 Candidate 

(13,15) D 100 23.53 4 Candidate 

(13,20) E 100 23.53 4 Candidate 

(15,22) F 100 23.53 4 Candidate 

(18,27) G 100 23.53 4 Candidate 

(20,22) H 100 23.53 4 Candidate 

(22,25) I 100 23.53 4 Candidate 

(23,30) J 100 23.53 4 Candidate 
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Appendix 5.B Model Parameters for IEEE 118 Bus Test System 

Table 5- 8  Model Parameters for GENCOs of a IEEE 118 Bus Test System 

 

    (MW)   ($/MW/MW)   ($/MW/MW)   
    

($/MW) 

1 100 20 0.0625 10 

4 100 20 0.0625 10 

6 100 20 0.0625 10 

8 100 20 0.0625 10 

10 550 20 0.0625 10 

12 185 20 0.0625 10 

15 100 20 0.0625 10 

18 100 20 0.0625 10 

19 100 20 0.0625 10 

24 100 20 0.0625 10 

25 320 20 0.0625 10 

26 414 20 0.0625 10 

27 100 20 0.0625 10 

31 107 20 0.0625 10 

32 100 20 0.0625 10 

34 100 20 0.0625 10 
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Table 5- 8  (continued) 

36 100 20 0.0625 10 

40 100 20 0.0625 10 

42 100 20 0.0625 10 

46 119 20 0.0625 10 

49 304 20 0.0625 10 

54 148 20 0.0625 10 

55 100 20 0.0625 10 

56 100 20 0.0625 10 

59 255 20 0.0625 10 

61 260 20 0.0625 10 

62 100 20 0.0625 10 

65 491 40 0.125 6 

66 492 40 0.125 6 

69 805 40 0.125 6 

70 100 40 0.125 6 

72 100 40 0.125 6 

73 100 40 0.125 6 

74 100 40 0.125 6 

76 100 40 0.125 6 

77 100 40 0.125 6 

80 577 40 0.125 6 
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Table 5- 8  (continued) 

85 100 40 0.125 6 

87 104 40 0.125 6 

89 707 40 0.125 6 

90 100 40 0.125 6 

91 100 40 0.125 6 

92 100 40 0.125 6 

99 100 40 0.125 6 

100 352 40 0.125 6 

103 140 40 0.125 6 

104 100 40 0.125 6 

105 100 40 0.125 6 

107 100 40 0.125 6 

110 100 40 0.125 6 

111 136 40 0.125 6 

112 100 40 0.125 6 

113 100 40 0.125 6 

116 100 40 0.125 6 

 

Table 5- 9  Model Parameters for Transmission Lines of a IEEE 118 Bus Test System 

          (   ) Line Status          (   ) Line Status 

(1.2) 9 Existing (56.57) 9 Existing 
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Table 5- 9  (continued) 

(1.3) 22 Existing (56.58) 9 Existing 

(2.12) 15 Existing (56.59) 4 Existing 

(3.5) 9 Existing (59.60) 7 Existing 

(3.12) 6 Existing (59.61) 6 Existing 

(4.5) 120 Existing (59.63) 26 Existing 

(4.11) 13 Existing (60.61) 71 Existing 

(5.6) 18 Existing (60.62) 17 Existing 

(5.8) 37 Existing (61.62) 25 Existing 

(5.11) 13 Existing (61.64) 37 Existing 

(6.7) 46 Existing (62.66) 4 Existing 

(7.12) 28 Existing (62.67) 8 Existing 

(8.9) 33 Existing (63.64) 50 Existing 

(8.30) 20 Existing (64.65) 33 Existing 

(9.10) 31 Existing (65.66) 27 Existing 

(11.12) 47 Existing (65.68) 62 Existing 

(11.13) 13 Existing (66.67) 9 Existing 

(12.14) 13 Existing (68.69) 27 Existing 

(12.16) 11 Existing (68.81) 49 Existing 

(12.117) 7 Existing (68.116) 245 Existing 

(13.15) 4 Existing (69.70) 7 Existing 

(14.15) 5 Existing (69.75) 7 Existing 
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Table 5- 9  (continued) 

(15.17) 21 Existing (69.77) 9 Existing 

(15.19) 23 Existing (70.71) 27 Existing 

(15.33) 7 Existing (70.74) 7 Existing 

(16.17) 5 Existing (70.75) 6 Existing 

(17.18) 19 Existing (71.72) 5 Existing 

(17.30) 26 Existing (71.73) 21 Existing 

(17.31) 6 Existing (74.75) 23 Existing 

(17.113) 30 Existing (75.77) 5 Existing 

(18.19) 19 Existing (75.118) 19 Existing 

(19.20) 8 Existing (76.77) 6 Existing 

(19.34) 4 Existing (76.118) 17 Existing 

(20.21) 11 Existing (77.78) 74 Existing 

(21.22) 10 Existing (77.80) 18 Existing 

(22.23) 6 Existing (77.82) 10 Existing 

(23.24) 19 Existing (78.79) 39 Existing 

(23.25) 12 Existing (79.80) 14 Existing 

(23.32) 8 Existing (80.81) 27 Existing 

(24.70) 2 Existing (80.96) 5 Existing 

(24.72) 5 Existing (80.97) 10 Existing 

(25.26) 26 Existing (80.98) 9 Existing 

(25.27) 6 Existing (80.99) 5 Existing 
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Table 5- 9  (continued) 

(26.30) 12 Existing (82.83) 25 Existing 

(27.28) 11 Existing (82.96) 17 Existing 

(27.32) 12 Existing (83.84) 6 Existing 

(27.115) 13 Existing (83.85) 6 Existing 

(28.29) 10 Existing (84.85) 13 Existing 

(29.31) 27 Existing (85.86) 8 Existing 

(30.38) 18 Existing (85.88) 9 Existing 

(31.32) 9 Existing (85.89) 6 Existing 

(32.113) 5 Existing (86.87) 5 Existing 

(32.114) 16 Existing (88.89) 14 Existing 

(33.37) 6 Existing (89.90) 5 Existing 

(34.36) 34 Existing (89.92) 19 Existing 

(34.37) 99 Existing (90.91) 11 Existing 

(34.43) 6 Existing (91.92) 7 Existing 

(35.36) 94 Existing (92.93) 11 Existing 

(35.37) 19 Existing (92.94) 6 Existing 

(37.38) 27 Existing (92.100) 3 Existing 

(37.39) 9 Existing (92.102) 17 Existing 

(37.40) 5 Existing (93.94) 13 Existing 

(38.65) 10 Existing (94.95) 21 Existing 
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Table 5- 9  (continued) 

(39.40) 15 Existing (94.96) 11 Existing 

(40.41) 19 Existing (94.100) 16 Existing 

(40.42) 5 Existing (95.96) 17 Existing 

(41.42) 7 Existing (96.97) 11 Existing 

(42.49) 3 Existing (98.100) 5 Existing 

(43.44) 4 Existing (99.100) 12 Existing 

(44.45) 10 Existing (100.101) 8 Existing 

(45.46) 7 Existing (100.103) 17 Existing 

(45.49) 5 Existing (100.104) 5 Existing 

(46.47) 7 Existing (100.106) 4 Existing 

(46.48) 5 Existing (101.102) 9 Existing 

(47.49) 15 Existing (103.104) 6 Existing 

(47.69) 3 Existing (103.105) 6 Existing 

(48.49) 18 Existing (103.110) 5 Existing 

(49.50) 12 Existing (104.105) 25 Existing 

(49.51) 6 Existing (105.106) 17 Existing 

(49.54) 3 Existing (105.107) 5 Existing 

(49.66) 10 Existing (105.108) 13 Existing 

(49.69) 3 Existing (106.107) 5 Existing 

(50.57) 7 Existing (108.109) 31 Existing 

(51.52) 15 Existing (109.110) 12 Existing 
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Table 5- 9  (continued) 

(51.58) 12 Existing (110.111) 12 Existing 

(52.53) 6 Existing (110.112) 14 Existing 

(53.54) 8 Existing (114.115) 92 Existing 

(54.55) 13 Existing (20.38)A 30 Candidate 

(54.56) 97 Existing (21.69)B 30 Candidate 

(54.59) 4 Existing (61.65)C 30 Candidate 

(55.56) 60 Existing (25.89)D 30 Candidate 

(55.59) 4 Existing 
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CHAPTER 6 GENERAL CONCLUSIONS 

 

This dissertation is a combination of three papers to provide well rounded insights 

addressing our research questions based on solving expansion planning problems under 

different market mechanisms. In a restructured electricity market there are multiple decision 

makers at various levels making decisions that interact and they all have to deal with 

uncertainty. Each decision maker must consider two types of decision, an expansion decision 

for the long term and an operational decision for participating in an electricity market. This is 

a problem with multiple periods and multiple dimensions and is too complicated to approach 

as one single problem. Therefore, the problem is decomposed and insight is gained by 

exploring it from different perspectives. 

From a centralized perspective, the first paper, presented in Chapter 2, considers a 

long term generation expansion problem with minimization of two metrics, both the expected 

cost (EC) and Conditional Value-at-Risk (CVaR), by a two-stage stochastic integer program. 

The two integrated future uncertainties are modeled as a stochastic process and a scenario 

tree is constructed to represent their evolution over multiple periods by a statistical property 

matching technique. A Midwest ISO (MISO) based generation expansion case study is tested. 

To address computational complexity, scenario sampling is applied to generate a scenario 

subset to represent the entire uncertainty space, and the Multiple Replication Procedure 

(MRP) is used to compute the confidence interval on the optimality gap and evaluate the 

stability of the obtained approximate solution. The numerical results indicate the optimality 

gaps for the minimization of EC are very small compared to those for minimizing CVaR. The 
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solutions under different scenario sampling subsets are structurally similar. The results also 

imply that a highly accurate solution can be obtained based on a relatively small ample of a 

large scenario space. 

From the perspective of an integrated electricity supply system where generation 

expansion decisions could largely depend on the availability of other facilities, the second 

paper, presented in Chapter 3, adopts the system point of view in centralized capacity 

expansion considering the interactions of multiple decentralized participants in a competitive 

electricity market. It considers an integrated electricity supply system including fuel 

transportation, generation and transmission. The model incorporates a discrete transmission 

expansion decision, a competitive market with price-responsive demand, and two potential 

carbon policies which are presented as model extensions in an Appendix to the chapter. The 

difficulty of solving a bi-level programming problem to its global optimality is discussed and 

three problem relaxations obtained by reformulation are proposed to explore the problem and 

solve it to its global optimality. A 6 bus case study is presented to illustrate the global 

expansion decisions’ effect on the market. The results indicate that the total net social 

welfare, defined as the welfare less investment cost, reduces by 2% with generators’ strategic 

operational decisions, compared to the non-strategic decisions. With generators being non-

strategic, the total social surplus increases with better-off electricity buyers and worse-off 

generators, and fuel transportation and generation capacity expansion increase, which lead to 

lower electricity prices. To avoid computational complexity, the model is deterministic and 

static. For future research, a multi-period investment and operational decisions can be 

considered in the model and major uncertain factors can also be taken into account by 
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scenarios. The extended problem forms a stochastic bi-level program, which is also known as 

a stochastic mathematical program with complementarity constraints (MPEC) problem.  

Furthermore, comparison can be made between our model with a centralized capacity 

expansion decisions from a global point of view and the system from a more realistic point of 

view. The difference will tell how much we could benefit from a centralized point of view 

for the capacity decision making and provide insightful guidance for a potential policy 

design. 

Finally, the third paper, presented in Chapters 4 and 5, proposes a novel hybrid 

algorithm to solve a more realistic market based generation and transmission expansion 

problem. It allows each decentralized GENCO to make its own investment and operational 

decisions in anticipation of a market price settled by an ISO market clearing problem and in 

response to a centralized transmission expansion decision by the ISO. The model poses a 

complicated tri-level structure including an EPEC sub-problem, in which each of its MPECs 

represents an individual GENCO’s decision making problem. Algorithms are proposed to 

first solve the EPEC sub-problem and then the tri-level programming problem. The 

Complementarity Problem (CP) reformulation is capable to transform the entire EPEC 

problem into a set of constraints, so that the tri-level programs can be converted into a single-

level mixed integer nonlinear program, which can be solved to identify a promising 

transmission plan. The Diagonalization Method (DM) is capable to solve the EPEC sub-

problem reliably and efficiently given a predetermined transmission plan. A hybrid algorithm 

formed by by combining the two methods was first tested on a 6 bus system, in which the 

results demonstrate that the algorithm solved the instance to its global optimality. A modified 
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IEEE 30 bus test system is solved by the algorithm to test its scalability and solution of it has 

also been found successfully. An approximate Nash equilibrium (NE) is defined in the cases 

when the pure NE does not exist, and an analysis of the local concavity of the obtained 

(approximate) NE solution was conducted. A IEEE 118 bus test system is also solved by the 

algorithm and its solution has been validated as the globally optimal solution. For future 

research, an extended model with multi-period capacity expansion and operational decisions 

can be considered. The assumption of the one-period model makes the generation level 

always equal to the capacity level, which is not the case in reality. The algorithm’s scalability 

on a stochastic version of the problem with consideration of the uncertainty variables can be 

tested in the future. Further investigation of the conditions for the existence and uniqueness 

of the NE solution is also needed.  
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